HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY
HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2021

CHEMISTRY PAPER 2

11:45 am – 12:45 pm (1 hour)
This paper must be answered in English

INSTRUCTIONS

- (1) This paper consists of **THREE** sections, Section A, Section B and Section C. Attempt **ALL** questions in any **TWO** sections.
- (2) Write your answers in the **DSE(D)** Answer Book provided. Start each question (not part of a question) on a new page.
- (3) A Periodic Table is printed on page 8 of this Question Paper. Atomic numbers and relative atomic masses of elements can be obtained from the Periodic Table.

©香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2021

Not to be taken away before the end of the examination session

Section A Industrial Chemistry

Answer ALL parts of the question.

- 1. (a) Answer the following short questions:
 - (i) At certain conditions, the activation energy for the decomposition of HCOOH(l) to CO(g) and $H_2O(l)$ shown below is +77.7 kJ mol⁻¹.

$$HCOOH(1) \rightleftharpoons CO(g) + H_2O(1)$$
 $\Delta H = +28.5 \text{ kJ mol}^{-1}$

What is the activation energy for the formation of HCOOH(I) from $\tilde{CO}(g)$ and $H_2O(I)$ at the same conditions, in kJ mol⁻¹?

(1 mark)

(ii) The activation energy for a certain reaction is $+65.0 \text{ kJ mol}^{-1}$. The rate constant of the reaction at 27 °C is k_1 . Calculate the rate constant of the reaction at 37 °C in terms of k_1 .

(Gas constant
$$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$$
; Arrhenius equation : $log \ k = constant - \frac{E_a}{2.3RT}$)
(2 marks)

(iii) The rate equation for the reaction $A(g) + B(g) \rightarrow C(g)$ at certain conditions is given below, with k_2 being the rate constant:

Rate =
$$k_2[A(g)][B(g)]^{\frac{3}{2}}$$

- (1) What is the order of reaction with respect to $\mathbf{B}(g)$?
- (2) The unit of the rate is mol $dm^{-3} s^{-1}$. State the unit of k_2 .

(2 marks)

(b) The diagram below shows how liquid ammonia is produced by the Haber process.

- (i) Explain why $N_2(g)$ and $H_2(g)$ need to be purified before going into the reaction chamber. (1 mark)
- (ii) Explain why the unreacted $N_2(g)$ and $H_2(g)$ are passed again to the reaction chamber.

(1 mark)

(iii) Why does ammonia, but not the other gases, become a liquid in the condenser?

(1 mark)

- (iv) Catalyst is used in the reaction of Haber process.
 - (1) Suggest a catalyst that can be used.
 - (2) With the aid of a Maxwell-Boltzmann distribution curve, explain why the reaction becomes faster when a catalyst is used.

(5 marks)

- 1. (c) Methanol is an important chemical in industry and can be produced from methane. The production can be considered as separated into two stages.
 - (i) State one potential hazard of methanol.

(1 mark)

(ii) Other than natural gas, suggest one source of methane.

(1 mark)

(iii) In the first stage, CH₄(g) reacts with H₂O(g) to form CO(g) and H₂(g), and equilibrium would be attained. The graphs below show the percentage conversion of CH₄(g) at equilibrium under different conditions.

- (1) With reference to **Graph 1**, explain whether the forward reaction is endothermic or exothermic.
- (2) With reference to **Graph 2**, explain, with the aid of a chemical equation, the effect of pressure on the percentage conversion of CH₄(g).

(4 marks)

(iv) In the second stage, CO(g) reacts with $H_2(g)$ to form methanol. Write a chemical equation for the reaction.

(1 mark)

END OF SECTION A

Section B Materials Chemistry

Answer ALL parts of the question.

- 2. (a) Answer the following short questions:
 - (i) Explain why cellulose can absorb water but chitin cannot.

(2 marks)

(ii) Suggest one use of liquid crystal in daily life.

(1 mark)

(iii) A portion of the structure of natural rubber is shown below:

- (1) Draw the repeating unit of natural rubber.
- (2) Suggest a physical property of natural rubber that would be improved by 'vulcanisation' in the rubber industry.

(2 marks)

(b) CH₂=C(CH₃)COOCH₃ is the monomer of polymethyl methacrylate (PMMA). The following steps show how this monomer can be synthesised:

Step (I): $CH_3COCH_3 + HCN \rightarrow CH_3C(CN)(OH)CH_3$

Step (II): $CH_3C(CN)(OH)CH_3 + H_2SO_4 + CH_3OH \rightarrow CH_2=C(CH_3)COOCH_3 + NH_4HSO_4$

(i) The synthesis can be represented by the overall equation shown below:

$$CH_3COCH_3 + HCN + H_2SO_4 + CH_3OH \rightarrow CH_2=C(CH_3)COOCH_3 + NH_4HSO_4$$

Based on this overall equation, calculate the atom economy of the synthesis. (Formula masses: HCN = 27.0, $CH_3OH = 32.0$, $CH_3COCH_3 = 58.0$, $H_2SO_4 = 98.1$, $CH_2=C(CH_3)COOCH_3 = 100.0$, $NH_4HSO_4 = 115.1$)

(1 mark)

(ii) Based on the given information, suggest, with explanation, whether the synthesis can be considered as green.

(1 mark)

(iii) Write a chemical equation for the formation of PMMA from CH₂=C(CH₃)COOCH₃.

(1 mark)

- (iv) (1) What is meant by the term 'thermosetting plastics'?
 - (2) Explain, from molecular level, whether PMMA is a thermosetting plastic.

(2 marks)

(v) State a property of PMMA other than its thermal property. Suggest one use of PMMA based on this property.

(2 marks)

- 2. (c) Both polylactide (PLA) and stainless steel can be used to make lunch boxes.
 - (i) PLA is biodegradable and can be made from the raw material corn starch.
 - (1) In terms of raw material, suggest one advantage and one disadvantage in using PLA to make disposable lunch boxes.
 - (2) In terms of molecular structure, explain why PLA is biodegradable.

(4 marks)

(ii) Stainless steel can be used to make reusable lunch boxes. The diagram below shows a portion of a certain layer of atoms in stainless steel.

- (1) The presence of X in stainless steel makes stainless steel more resistant to corrosion than pure iron. Suggest what X would be.
- (2) The presence of Y in stainless steel makes stainless steel harder than pure iron. Suggest what Y would be, and explain how it can increase the hardness.
- (3) Iron is the major component of stainless steel and has a cubic close-packed crystal structure under certain conditions. What is the coordination number of an iron atom in this crystal structure?

(4 marks)

END OF SECTION B

Section C Analytical Chemistry

Answer ALL parts of the question.

- 3. (a) Answer the following short questions:
 - (i) Suggest a chemical test to show how Al₂(SO₄)₃(aq) and ZnSO₄(aq) can be distinguished. (2 marks)
 - (ii) Suggest a chemical test to show how (CH₃)₃COH(1) and CH₃COOH(1) can be distinguished. (2 marks)
 - (iii) State the expected observation of adding 2,4-dinitrophenylhydrazine to propanone. (1 mark)
 - (b) In an experiment to prepare cyclohexene from cyclohexanol using concentrated phosphoric acid as a dehydrating agent, a liquid mixture of cyclohexene, phosphoric acid and cyclohexanol was obtained. (Boiling points: cyclohexene = 83 °C, cyclohexanol = 162 °C)
 - (i) Describe the steps how the phosphoric acid in the mixture can be removed by liquid-liquid extraction, using an aqueous solution.

(3 marks)

- (ii) After the removal of the phosphoric acid, a distillate of boiling point of 83 °C was obtained from fractional distillation of the remaining mixture.
 - (1) Draw a labelled diagram for the set-up of the fractional distillation.
 - (2) With the help of boiling point and infra-red spectroscopy, suggest how you can support the following statement:

'The distillate is cyclohexene, and without the presence of any cyclohexanol.'

Characteristic Infra-red Absorption Wavenumber Ranges (Stretching modes)

Bond	Compound type	Wavenumber range / cm ⁻¹
C=C	Alkenes	1610 to 1680
C=O	Aldehydes, ketones, carboxylic acids and derivatives	1680 to 1800
C≡C	Alkynes	2070 to 2250
C≡N	Nitriles	2200 to 2280
О–Н	Acids (hydrogen-bonded)	2500 to 3300
С–Н	Alkanes, alkenes, arenes	2840 to 3095
О–Н	Alcohols (hydrogen-bonded)	3230 to 3670
N-H	Amines	3350 to 3500

(4 marks)

3. (c) The mass spectrum of an ester A is shown below:

(i) Deduce the molecular formula of A. (Compositions by mass : C = 70.6%, H = 5.9%, O = 23.5%; Relative atomic masses : H = 1.0, C = 12.0, O = 16.0)

(2 marks)

- (ii) Given that the signal at m/z = 77 corresponds to $C_6H_5^+$, deduce the structural formula of ester A. (2 marks)
- (iii) 2.75 g of a crude sample of A was heated with 50.0 cm³ of 0.060 M NaOH(aq) until no further reaction. The excess NaOH(aq) in the resulting mixture required 20.40 cm³ of 0.050 M HCl(aq) for complete neutralisation.
 - (1) Write a chemical equation for the reaction between A and NaOH(aq).
 - (2) Assuming that only A in the sample can react with NaOH(aq), calculate the percentage by mass of A in the sample.

(4 marks)

END OF SECTION C END OF PAPER

PERIODIC TABLE 周期表

																	· · · ·													
	0	2	He	4.0	10	Š	20.2	18	Ar	40.0	36	X	83.8	54	Xe	131.3	98	Rn	(222)											
				VII	6	Ē	19.0	17	ರ	35.5	35	Br	79.9	53	_	126.9	85	At	(210)											
				M	8	0	16.0	16	S	32.1	34	Se	79.0	52	Te	127.6	84	Po	(506)											
				Λ	7	Z	14.0	15	<u>a</u>	31.0	33	As	74.9	51	Sp	121.8	83	Bi	209.0											
				IV	9	၁	12.0	14	S:	28.1	32	g	72.6	20	Sn	118.7	82	Pb	207.2											
٤.	•			III	5	<u>m</u>	10.8	13	Ι	27.0	31	Са	69.7	49	ų	114.8	81	I	204.4											
	atomic number 原子序			•	<u> </u>						30	Zn	65.4	48	Cq	112.4	80	Hg	200.6											
													29	n C	63.5	47	Ag	107.9	62	Ψn	197.0									
								質量	^			28	Z	58.7	46	Pd	106.4	78	굺	195.1										
1. 5									相對原子			27	ပိ	58.9	45	Rh Ph	102.9	11	<u>_</u>	192.2										
			d.					ic mass			-			44																
ic numbe				-				elative atomic mass		-	 		_	43					_											
/ atom							,	/	rela						42															
		1	H	¥ #		™	T I		<u> </u>	<u> </u>	н	9	/	/															og G	(262)
																-		—				-		-			(261)			
																	_					(227)								
				П		Be	0	~	Mg	1.3												(226) (3								
GROUP 族					4												-	•	-											
GROI				Ι	m	Z	6.9	11	Na	23.0	19	×	39.1	37	Rb	85.5	55	Č	132.	87	Ŧ	(223								

71	Lu	175.0	103	Ľ	(260)	
70	ΛP	173.0	102	%	(259)	
69	Tm	168.9	101	Md	(258)	
89	Ā	167.3	100	Fm	(257)	
29	H0	164.9	66	Es	(252)	
99	Ď	162.5	86	C	(251)	
65	Tb	158.9	. 26	Bķ	(247)	
49	B	157.3	96	Cm	(247)	
63	Eu	152.0	95	Αm	(243)	
62	Sm	150.4	94	Pu	(244)	
61	Pm	(145)	93	ď	$(23\bar{7})$	
09	PN	144.2	92	n	238.0	
29	Pr	140.9	91	Pa	(231)	
58	ce	140.1	06	Th	232.0	
¥.			*			