2012-DSE MATH CP PAPER 2

HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY
HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2012

MATHEMATICS Compulsory Part PAPER 2

 $11.30 \text{ am} - 12.45 \text{ pm} (1\frac{1}{4} \text{ hours})$

INSTRUCTIONS

- 1. Read carefully the instructions on the Answer Sheet. After the announcement of the start of the examination, you should first stick a barcode label and insert the information required in the spaces provided. No extra time will be given for sticking on the barcode label after the 'Time is up' announcement.
- When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS**. You are advised to use an HB pencil to mark all the answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only ONE answer for each question. If you mark more than one answer, you will receive NO MARKS for that question.
- 6. No marks will be deducted for wrong answers.

©香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2012

Not to be taken away before the end of the examination session

There are 30 questions in Section A and 15 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

Section A

1.
$$\frac{(2x^4)^3}{2x^5} =$$

- A. $3x^2$.
- B. $3x^{7}$.
- C. $4x^7$.

 D. $4x^{59}$.

2.
$$(4x+y)^2-(4x-y)^2=$$

- B. $2y^2$.
- 8xy.
- D. 16xy.

3. If p and q are constants such that
$$x^2 + p = (x+2)(x+q)+10$$
, then $p =$

- B.
- 6.
- 10. D.

- 4. If k is a constant such that $x^3 + 4x^2 + kx 12$ is divisible by x + 3, then k =
 - A. -25.
 - B. -1.
 - C. 1.
 - D. 17.
- 5. If m+2n+6=2m-n=7, then n=
 - A. -4.
 - B. -1
 - C. 3.
 - D. 11.
- 6. The figure shows the graph of $y = a(x+b)^2$, where a and b are constants. Which of the following is true?
 - A. a > 0 and b > 0
 - B. a > 0 and b < 0
 - C. a < 0 and b > 0
 - D. a < 0 and b < 0

- 7. The solution of 15+4x<3 or 9-2x>1 is
 - A. x < -3.
 - B. x > -3.
 - C. x < 4.
 - D. x > 4.

- 8. In a company, 37.5% of the employees are female. If 60% of the male employees and 80% of the female employees are married, then the percentage of married employees in the company is
 - A. 32.5%.
 - B. 45%.
 - C. 55%.
 - D. 67.5%.
- 9. If x and y are non-zero numbers such that $\frac{6x+5y}{3y-2x} = 7$, then x: y =
 - A. 4:5
 - B. 4:13.
 - C. 5:4.
 - D. 13:4.
- 10. It is given that y partly varies directly as x^2 and partly varies inversely as x. When x = 1, y = -4 and when x = 2, y = 5. When x = -2, y =
 - A. -11.
 - В. –5.
 - C. 5.
 - D. 11.
- 11. Mary performs a typing task for 7 hours. Her average typing speeds for the first 3 hours and the last 4 hours are 63 words per minute and 56 words per minute respectively. Find her average typing speed for the 7 hours.
 - A. 17 words per minute
 - B. 35 words per minute
 - C. 59 words per minute
 - D. 60 words per minute

12. In the figure, the 1st pattern consists of 1 dot. For any positive integer n, the (n+1) th pattern is formed by adding n dots to the nth pattern. Find the number of dots in the 8th pattern.

- A. 22
- B. 29
- C. 36
- D. 37
- 13. 0.0322515 =
 - A. 0.032 (correct to 3 significant figures).
 - B. 0.0322 (correct to 4 decimal places).
 - C. 0.03225 (correct to 5 significant figures).
 - D. 0.032252 (correct to 6 decimal places).
- 14. The length of a piece of thin string is measured as $25 \,\mathrm{m}$ correct to the nearest $\,\mathrm{m}$. If the string is cut into n pieces such that the length of each piece is measured as $5 \,\mathrm{cm}$ correct to the nearest $\,\mathrm{cm}$, find the greatest possible value of n.
 - A. 445
 - B. 566
 - C. 567
 - D. 650
- 15. In the figure, the area of quadrilateral ABCD is
 - A. 144 cm^2 .
 - B. 160 cm^2 .
 - C. 178 cm^2 .
 - D. 288 cm^2 .

16. In the figure, OAB and OCD are sectors with centre O. If $\widehat{AB} = 12\pi \, \mathrm{cm}$, $\widehat{CD} = 16\pi \, \mathrm{cm}$ and $OA = 30 \, \mathrm{cm}$, then AC =

In the figure, ABCD is a parallelogram. E and F are points lying on AB and CD respectively. AD produced and EF produced meet at G. It is given that DF:FC=3:4 and AD:DG=1:1. If the area of ΔDFG is 3 cm^2 , then the area of the parallelogram ABCD is

A.
$$12 \text{ cm}^2$$
.

B.
$$14 \text{ cm}^2$$
.

$$C. 18 cm^2.$$

18. In the figure, D is a point lying on AC such that BD is perpendicular to AC. If $BC = \ell$, then $AB = \ell$

B.
$$\frac{\ell \sin \beta}{\cos \alpha}$$

C.
$$\frac{\ell \cos \alpha}{\sin \beta}$$

D.
$$\frac{\ell \cos \beta}{\sin \alpha}$$

19.
$$\frac{\cos 60^{\circ}}{1 - \cos(90^{\circ} - \theta)} + \frac{\cos 240^{\circ}}{1 - \cos(270^{\circ} - \theta)} =$$

A.
$$\frac{1}{\cos^2 \theta}$$
.

B.
$$\frac{\cos\theta}{\tan\theta}$$
.

C.
$$\frac{\tan \theta}{\cos \theta}.$$

D.
$$\frac{1}{\cos\theta\tan\theta}$$

20. In the figure, O is the centre of the circle ABCD. If $\angle BAO = 28^{\circ}$, $\angle BCD = 114^{\circ}$ and $\angle CDO = 42^{\circ}$, then $\angle ABC =$

In the figure, AB is a diameter of the circle ABCD. If $AB=12\,\mathrm{cm}$ and $CD=6\,\mathrm{cm}$, then the area of the shaded region is

A.
$$(12\pi - 9) \text{ cm}^2$$
.

B.
$$(12\pi + 9) \text{ cm}^2$$
.

C.
$$(12\pi - 9\sqrt{3}) \text{ cm}^2$$
.

D.
$$(12\pi + 9\sqrt{3}) \text{ cm}^2$$
.

- 22. Which of the following statements about a regular 12-sided polygon are true?
 - I. Each exterior angle is 30°.
 - II. Each interior angle is 150°.
 - III. The number of axes of reflectional symmetry is 6.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

- 23. The rectangular coordinates of the point P are $(-3, -3\sqrt{3})$. If P is rotated anticlockwise about the origin through 90°, then the polar coordinates of its image are
 - A. $(3,150^{\circ})$.
 - B. $(3,330^{\circ})$.
 - C. (6,150°).
 - D. $(6,330^{\circ})$.

- 24. If P is a moving point in the rectangular coordinate plane such that the distance between P and the point (20,12) is equal to 5, then the locus of P is a
 - A. circle.
 - B. square.
 - C. parabola.
 - D. triangle.

In the figure, the equations of the straight lines L_1 and L_2 are ax + y = b and cx + y = d respectively. Which of the following are true?

II.
$$a < c$$

III.
$$b > d$$

IV.
$$ad > bc$$

- A. I, II and III only
- B. I, II and IV only
- C. I, III and IV only
- D. II, III and IV only

26. In the figure, the radius of the circle and the coordinates of the centre are r and (h, k) respectively. Which of the following are true?

I.
$$h + k > 0$$

II.
$$r-h>0$$

III.
$$r-k>0$$

27. 9★♦ is a 3-digit number, where ★ and ♦ are integers from 0 to 9 inclusive. Find the probability that the 3-digit number is divisible by 5.

A.
$$\frac{1}{2}$$

B.
$$\frac{7}{33}$$

C.
$$\frac{20}{99}$$

D.
$$\frac{19}{100}$$

28. The stem-and-leaf diagram below shows the distribution of the ages of a group of members in a recreational centre.

Stem (tens)	Leaf (units)							
5	0	5	 6	6	8			
6	1	4	5	5	7	8	8	9
7	3	4	4	6	7	9		
8								
9	1							

A member is randomly selected from the group. Find the probability that the selected member is not under the age of 74.

- A. 0.2
- B. 0.3
- C. 0.7
- D. 0.8
- 29. The bar chart below shows the distribution of the numbers of rings owned by the girls in a group. Find the standard deviation of the distribution correct to 2 decimal places.
 - A. 1.04
 - B. 1.16
 - C. 1.19
 - D. 2.09

30. Consider the following data:

- 19
- 10
- 12
- 12
- 13 13
- 14
- 15

16

n

If both the mean and the median of the above data are 14, which of the following are true?

- I. $\sqrt{m} \ge 14$
- II. *n* ≤ 16
- III. m + n = 30
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

Section B

31. The H.C.F. and the L.C.M. of three expressions are ab^2 and $4a^4b^5c^6$ respectively. If the first expression and the second expression are $2a^2b^4c$ and $4a^4b^2c^6$ respectively, then the third expression is

- A. ab^2 .
- B. ab^5 .
- C. $2ab^2c$.
- D. $2ab^5c$.

32. The graph in the figure shows the linear relation between x and $\log_3 y$. If $y = mn^x$, then n =

- B. $\frac{1}{9}$.
- C. 9.
- D. 81.

33. $AD0000002012_{16} =$

- A. $(10)16^{11} + (13)16^{10} + 8210$.
- B. $(10)16^{12} + (13)16^{11} + 131360$.
- C. $(11)16^{11} + (14)16^{10} + 8210$.
- D. $(11)16^{12} + (14)16^{11} + 131360$.

34. Let f(x) be a quadratic function. If the coordinates of the vertex of the graph of y = f(x) are (3, -4), which of the following must be true?

- A. The roots of the equation f(x) = 0 are integers.
- B. The roots of the equation f(x)-3=0 are rational numbers.
- C. The roots of the equation f(x)+4=0 are real numbers.
- D. The roots of the equation f(x) + 5 = 0 are nonreal numbers.

- 35. $i^3(\beta i 3) =$
 - A. $\beta + 3i$.
 - B. $\beta-3i$.
 - C. $-\beta + 3i$.
 - D. $-\beta 3i$.

- 36. The figure shows a shaded region (including the boundary). If (h, k) is a point lying in the shaded region, which of the following are true?
 - I. $k \ge 3$
 - II. $h-k \ge -3$
 - III. $2h+k \le 6$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

- 37. Let a_n be the *n*th term of an arithmetic sequence. If $a_{18} = 26$ and $a_{23} = 61$, which of the following are true?
 - I. $a_{14} < 0$
 - II. $a_1 a_2 < 0$
 - III. $a_1 + a_2 + a_3 + \dots + a_{27} > 0$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

Which of the following may represent the graph of y = f(x) and the graph of y = f(x-2)+1 on the same rectangular coordinate system?

A.

В

 \mathbf{C}

D.

- 39. The figure shows
 - A. the graph of $y = 1 + 3\cos\frac{x^{\circ}}{2}$.
 - B. the graph of $y = 1 + 3\cos 2x^{\circ}$.
 - C. the graph of $y = 4 + 3\cos\frac{x^{\circ}}{2}$.
 - D. the graph of $y = 4 + 3\cos 2x^{\circ}$.

- 40. The figure shows a regular tetrahedron *ABCD*. Find the angle between the plane *ABC* and the plane *BCD* correct to the nearest degree.
 - A. 48°
 - B. 53°
 - C. 60°
 - D. 71°

- In the figure, PQ is the tangent to the circle ABC at O, where O is the centre of the semicircle PBQ. It is given that BCP is a straight line. If $\angle BPQ = 12^{\circ}$, then $\angle BAC =$
 - A. 18°.
 - B. 24°.
 - C. 36°.
 - D. 54°.

- Find the range of values of k such that the circle $x^2 + y^2 + 2x 4y 13 = 0$ and the straight line x y + k = 0 intersect at two distinct points.
 - A. -9 < k < 3
 - $^{\vee}$ B. -3 < k < 9
 - C. k < -9 or k > 3
 - D. k < -3 or k > 9

- 43. A drama club is formed by 12 boys and 8 girls. If a team of 5 students is selected from the club to participate in a competition and the team consists of at least one girl, how many different teams can be formed?
 - A. 3960
 - B. 14712
 - C. 15448
 - D. 15504
- 44. A box contains six balls numbered 7, 8, 8, 9, 9 and 9 respectively. John repeats drawing one ball at a time randomly from the box without replacement until the number drawn is 9. Find the probability that he needs exactly three draws.
 - A. $\frac{1}{2}$
 - B. $\frac{1}{6}$
 - C. $\frac{1}{8}$
 - D. $\frac{3}{20}$
- 45. Let m_1 , r_1 and v_1 be the mean, the range and the variance of a group of numbers $\{x_1, x_2, x_3, \ldots, x_{100}\}$ respectively. If m_2 , r_2 and v_2 are the mean, the range and the variance of the group of numbers $\{x_1, x_2, x_3, \ldots, x_{100}, m_1\}$ respectively, which of the following must be true?
 - I. $m_1 = m_2$
 - II. $r_1 = r_2$
 - III. $v_1 = v_2$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

END OF PAPER