PAPER 2

HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY
HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2013

MATHEMATICS Compulsory Part PAPER 2

11.30 am - 12.45 pm (11/4 hours)

INSTRUCTIONS

- 1. Read carefully the instructions on the Answer Sheet. After the announcement of the start of the examination, you should first stick a barcode label and insert the information required in the spaces provided. No extra time will be given for sticking on the barcode label after the 'Time is up' announcement.
- 2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS**. You are advised to use an HB pencil to mark all the answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

©香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2013 Not to be taken away before the end of the examination session

I

There are 30 questions in Section A and 15 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

Section A

1.
$$(27 \cdot 9^{n+1})^3 =$$

- A. 3^{6n+12} .
- B. 3^{6n+15} .
- C. 3^{9n+12} .
- D. 3^{9n+18} .

2. If
$$\frac{y-1}{c} = \frac{y+1}{d}$$
, then $y =$

- A. $\frac{c-d}{c+d}$.
- B. $\frac{d-c}{c+d}$.
- $C. \qquad \frac{c+d}{c-d} \ .$
- D. $\frac{c+d}{d-c}$.

3.
$$h\ell - k\ell + hm - km - hn + kn =$$

- A. $(h+k)(\ell-m+n)$.
- B. $(h+k)(\ell+m-n)$.
- C. $(h-k)(\ell-m+n)$.
- D. $(h-k)(\ell+m-n)$.

- 4. 0.0504545 =
 - A. 0.051 (correct to 2 significant figures).
 - B. 0.0505 (correct to 3 decimal places).
 - C. 0.05045 (correct to 4 significant figures).
 - D. 0.05046 (correct to 5 decimal places).
- 5. The solution of $x \frac{x-1}{2} > 5$ or 1 < x 11 is
 - A. x > 9.
 - B. x > 10.
 - C. x > 11.
 - D. x > 12.
- 6. Let k be a constant. Solve the equation $(x-k)^2 = 4k^2$.
 - A. x = 3k
 - B. x = 5k
 - C. x = -k or x = 3k
 - D. x = -3k or x = 5k
- 7. The figure shows the graph of $y = -2x^2 + ax + b$, where a and b are constants. The equation of the axis of symmetry of the graph is
 - A. x = 2.
 - B. x = 3.
 - C. x = 5.
 - D. y = 8.

8. If a, b and c are non-zero constants such that $x(x+3a)+a \equiv x^2+2(bx+c)$, then a:b:c=A. 2:3:1. B. 2:3:4. C. 3:2:6. D. 6:4:3. Let $f(x) = x^{13} - 2x + k$, where k is a constant. If f(x) is divisible by x + 1, find the remainder 9. when f(x) is divided by x-1. A. 0 B. -1C. 2 D. -210. Susan sells two cars for \$80 080 each. She gains 30% on one and loses 30% on the other. After the two transactions, Susan loses \$15 840. A. B. gains \$5 544. C. gains \$10 296. D. has no gain and no loss. A sum of \$50 000 is deposited at an interest rate of 8% per annum for 1 year, compounded monthly. 11. Find the interest correct to the nearest dollar. A. \$4000

B.

C.

D.

\$4122

\$4143

\$4150

- 12. The actual area of a playground is $900\,m^2$. If the area of the playground on a map is $36\,cm^2$, then the scale of the map is
 - A. 1:25.
 - B. 1:50.
 - C. 1:500.
 - D. 1:250 000.
- 13. It is given that z varies directly as x and inversely as \sqrt{y} . If y is decreased by 64% and z is increased by 25%, then x
 - A. is increased by 20%.
 - B. is increased by 80%.
 - C. is decreased by 25%.
 - D. is decreased by 75%.
- 14. The figure shows the graph of the straight line x + ay + b = 0. Which of the following are true?
 - I. a < 0
 - II. b < 0
 - III. a < b
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

- 15. In the figure, the regular octagon is divided into eight identical isosceles triangles and four of them are shaded. The number of axes of reflectional symmetry of the octagon is
 - A. 2.
 - B. 4.
 - C. 8.
 - D. 16.

16. In the figure, the diameter of the semicircle ABC is 3 cm. If AC = 2 cm, find the area of the shaded region correct to the nearest 0.01 cm^2 .

B. 0.52 cm^2

C. 0.64 cm^2

D. 1.07 cm^2

17. In the figure, the solid consists of a right circular cone and a hemisphere with a common base. The base radius and the height of the circular cone are 3 cm and 4 cm respectively. Find the total surface area of the solid.

A. $30\pi \text{ cm}^2$

B. $33\pi \text{ cm}^2$

C. $48\pi \text{ cm}^2$

D. $51\pi \text{ cm}^2$

18. In the figure, ABCD is a trapezium with AD//BC and AD:BC=2:3. Let E be the mid-point of BC. AC and DE intersect at F. If the area of ΔCEF is $36 \, \mathrm{cm}^2$, then the area of the trapezium ABCD is

 $A. \qquad 216\ cm^2\ .$

B. 264 cm^2 .

C. 280 cm^2 .

D. 320 cm^2 .

- 19. In the figure, ABCD is a circle. AC and BD intersect at E . If AB = AD and AD // BC, then $\angle BAE =$
 - A. 53°.
 - B. 57°.
 - C. 69°.
 - D. 74°.

- 20. In the figure, the bearing of P from O is S86°E and the bearing of Q from O is N32°E. If P and Q are equidistant from O, then the bearing of P from Q is
 - A. N24°W.
 - B. N27°W.
 - C. S24°E.
 - D. S27°E.

- 21. If an interior angle of a regular *n*-sided polygon is 4 times an exterior angle of the polygon, which of the following is/are true?
 - I. The value of n is 10.
 - II. The number of diagonals of the polygon is 10.
 - III. The number of folds of rotational symmetry of the polygon is 10.
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only

- 22. In $\triangle ABC$, AB:BC:AC=8:15:17. Find $\cos A:\cos C$.
 - A. 8:15
 - B. 8:17
 - C. 15:8
 - D. 15:17
- 23. If $0^{\circ} < x < 90^{\circ}$, which of the following must be true?
 - I. $\tan x \tan(90^{\circ} x) = 1$
 - II. $\sin x \sin(90^\circ x) < 0$
 - III. $\cos x + \cos(90^{\circ} x) > 0$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 24. The coordinates of the points A and B are (2,5) and (4,-1) respectively. Let P be a moving point in the rectangular coordinate plane such that AP = BP. Find the equation of the locus of P.
 - A. x-3y+3=0
 - B. x-3y-7=0
 - C. x-3y+13=0
 - D. 3x + y 11 = 0
- 25. The equation of the circle C is $2x^2 + 2y^2 4x + 8y 5 = 0$. The coordinates of the points P and Q are (-1,2) and (4,0) respectively. Which of the following is/are true?
 - I. The radius of C is 5.
 - II. The mid-point of PQ lies outside C.
 - III. If G is the centre of C, then $\angle PGQ$ is an acute angle.
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only

- 26. Two numbers are randomly drawn at the same time from seven cards numbered 1, 2, 3, 4, 5, 6 and 7 respectively. Find the probability that the product of the numbers drawn is an odd number.
 - A. $\frac{2}{7}$
 - B. $\frac{4}{7}$
 - C. $\frac{12}{49}$
 - D. $\frac{16}{49}$
- 27. If the mean and the mode of the nine numbers 14, 6, 4, 5, 7, 5, x, y and z are 8 and 14 respectively, then the median of these nine numbers is
 - A. 5.
 - B. 6.
 - C. 7.
 - D. 8.
- 28. The scatter diagram below shows the relation between x and y. Which of the following may represent the relation between x and y?

- A. y increases when x increases.
- B. y decreases when x increases.
- C. y varies inversely as x^2 .
- D. y varies directly as x^{-3} .

The stem-and-leaf diagram below shows the distribution of the hourly wages (in dollars) of some workers. 29.

Stem (tens)	Leaf (units)							
4	0	2	2	2	4	4	4	7
5	0	0	1	2	2	6	8	9
6	3	5	5	7				
7	0							
8	2	6						
9	5							

Which of the following box-and-whisker diagrams may represent the distribution of their hourly wages?

A.

B.

C.

D.

The pie charts below show the distributions of the profits of stationery shop X and stationery shop Y from 30. the sales of stationery in a certain month. Which of the following must be true?

Distribution of the profits of stationery shop X

Distribution of the profits of stationery shop Y

- In that month, the profit from the sales of pencils of stationery shop X is the same as that of A. stationery shop Y.
- In that month, the total profit from the sales of pens and notebooks of stationery shop X is B. less than the total profit from the sales of rulers and pencils of the shop.
- C. k = 14
- D. $\theta = 36^{\circ}$

Section B

31. The L.C.M. of $a^2 + 4a + 4$, $a^2 - 4$ and $a^3 + 8$ is

A,
$$a+2$$
.

B.
$$(a-2)(a+2)^2(a^2-2a+4)$$
.

C.
$$(a-2)(a+2)^2(a^2+2a+4)$$
.

D.
$$(a-2)(a+2)^4(a^2-2a+4)$$
.

32.

The figure above shows the graph of $y = ab^x$, where a and b are constants. Which of the following graphs may represent the relation between x and $\log_7 y$?

A.

B.

C.

D.

- 33. $A00000E00011_{16} =$
 - A. $10 \times 16^{11} + 14 \times 16^5 + 17$.
 - B. $11 \times 16^{11} + 15 \times 16^5 + 17$.
 - C. $10 \times 16^{12} + 14 \times 16^6 + 272$.
 - D. $11 \times 16^{12} + 15 \times 16^6 + 272$.

- 34. If $x \log y = x^2 \log y^2 10 = 2$, then y =
 - A. 100 .
 - B. 2 or -4.
 - C. $\frac{1}{100}$ or 10 000.
 - D. $\frac{1}{10000}$ or 100.

- 35. If $\alpha \neq \beta$ and $\begin{cases} 3\alpha = \alpha^2 5 \\ 3\beta = \beta^2 5 \end{cases}$, then $\alpha\beta = \beta$
 - A. 3.
 - В. –3.
 - C. 5.
 - D. -5.

- 36. The real part of $i + 2i^2 + 3i^3 + 4i^4$ is
 - A. 2.
 - B. -2.
 - C. 6.
 - D. -6.
- 37. Consider the following system of inequalities:

$$\begin{cases} x \ge 2 \\ y \ge 0 \\ x + 4y \le 22 \\ 4x - y \le 20 \end{cases}$$

- Let D be the region which represents the solution of the above system of inequalities. If (x, y) is a point lying in D, then the greatest value of 3y-4x+15 is
 - A. 3.
 - B. 17.
 - C. 22.
 - D. 30.
- 38. The *n*th term of a sequence is 2n-19. Which of the following is/are true?
 - I. 25 is a term of the sequence.
 - II. The sequence has 10 negative terms.
 - III. The sum of the first n terms of the sequence is $n^2 18n$.
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only

39. Let h and k be constants. The figure shows the graph of $y = h + k \tan 2x^{\circ}$, where $0 \le x \le \alpha$. Which of the following are true?

II.
$$k < 0$$

III.
$$\tan \alpha^{\circ} = \frac{1}{k}$$

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

40. If the height of a regular tetrahedron is 2 cm, then the volume of the tetrahedron is

A.
$$2 \text{ cm}^3$$
.

B.
$$\sqrt{3}$$
 cm³.

C.
$$\sqrt{6} \text{ cm}^3$$
.

D.
$$3\sqrt{3}$$
 cm³.

41. In the figure, O is the centre of the circle ABC. DE is the tangent to the circle at A. If AB is the angle bisector of $\angle CAE$, then $\angle ACO =$

- 42. Find the range of values of k such that the circle $x^2 + y^2 + 2x 2y 7 = 0$ and the straight line 3x 4y + k = 0 intersect.
 - A. -8 < k < 22
 - B. $-8 \le k \le 22$
 - C. k < -22 or k > 8
 - D. $k \le -22$ or $k \ge 8$
- 43. Let O be the origin. If the coordinates of the points A and B are (0,12) and (30,12) respectively, then the y-coordinate of the circumcentre of $\triangle OAB$ is
 - A. 6.
 - B. 8.
 - C. 12,
 - D. 15.
- 44. If the first three digits and the last five digits of an eight-digit phone number are formed by a permutation of 5, 6, 9 and a permutation of 2, 3, 4, 7, 8 respectively, how many different eight-digit phone numbers can be formed?
 - A. 15
 - B. 126
 - C. 720
 - D. 40 320
- 45. If the variance of the five numbers x_1 , x_2 , x_3 , x_4 and x_5 is 13, then the variance of the five numbers $3x_1+4$, $3x_2+4$, $3x_3+4$, $3x_4+4$ and $3x_5+4$ is
 - A. 39.
 - B. 43.
 - C. 117.
 - D. 121.

END OF PAPER