| Paper I                                                                   | Solution | Marks     | Remarks                                                                  |
|---------------------------------------------------------------------------|----------|-----------|--------------------------------------------------------------------------|
| 1. $\frac{(x^8y^7)^2}{x^5y^{-6}}$                                         | .%       |           |                                                                          |
| $=\frac{x^{16}y^{14}}{x^5y^{-6}}$                                         |          | 1M        | for $(ab)^m = a^m b^m$ or $(a^m)^n = a^{mn}$                             |
| $=x^{16-5}y^{14-(-6)}$                                                    |          | 1         | for $\frac{c^p}{c^q} = c^{p-q}$ or $\frac{c^p}{c^q} = \frac{1}{c^{q-p}}$ |
| $=x^{11}y^{20}$                                                           |          | 1A<br>(3) |                                                                          |
| 0 4 - (4 - 1 P) G                                                         |          |           |                                                                          |
| 2. $Ax = (4x + B)C$ $Ax = 4Cx + BC$                                       |          | l 1M      |                                                                          |
| Ax - 4Cx = BC $(A - 4C)x = BC$                                            |          | 1M        | for putting $x$ on one side                                              |
| $x = \frac{BC}{A - 4C}$                                                   |          | 1A        | or equivalent                                                            |
| Ax = (4x + B)C $Ax = 4x + B$                                              | ε        | 1M        |                                                                          |
| $\frac{A}{C}x = 4x + B$ $\frac{A}{C}x - 4x = B$                           |          | 1M        | for putting $x$ on one side                                              |
| $\left(\frac{A}{C} - 4\right)x = B$                                       |          |           |                                                                          |
| $\left(\frac{A-4C}{C}\right)x = B$                                        |          |           |                                                                          |
| $x = \frac{BC}{A - 4C}$                                                   |          | 1A        | or equivalent                                                            |
|                                                                           |          | (3)       |                                                                          |
| 3. $\frac{2}{4x-5} + \frac{3}{1-6x}$                                      |          |           |                                                                          |
| $= \frac{4x-5}{2(1-6x)+3(4x-5)}$ $= \frac{2(1-6x)+3(4x-5)}{(4x-5)(1-6x)}$ |          | 1M        |                                                                          |
| $=\frac{2-12x+12x-15}{(4x-5)(1-6x)}$                                      |          | 1M        | 9                                                                        |
| $=\frac{-13}{(4x-5)(1-6x)}$ $=\frac{13}{13}$                              |          | 1A        | or equivalent                                                            |
| $={(4x-5)(6x-1)}$                                                         |          | (3)       |                                                                          |
| ×                                                                         |          |           |                                                                          |
| 2                                                                         |          |           | ж.                                                                       |
|                                                                           | 44       |           |                                                                          |

|                                        | Solution                                                                                                                                                                                                                      | Marks           | Remarks                                                                                                                                                                                             |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| . (a)                                  | 5m - 10n $= 5(m - 2n)$                                                                                                                                                                                                        | 1A              |                                                                                                                                                                                                     |
| (b)                                    | $m^2 + mn - 6n^2$ $= (m+3n)(m-2n)$                                                                                                                                                                                            | 1A              |                                                                                                                                                                                                     |
| (c)                                    | $m^{2} + mn - 6n^{2} - 5m + 10n$ $= m^{2} + mn - 6n^{2} - (5m - 10n)$ $= (m + 3n)(m - 2n) - 5(m - 2n)$ $= (m - 2n)(m + 3n - 5)$                                                                                               | 1M<br>1A<br>(4) | for using the results of (a) and (b) or equivalent                                                                                                                                                  |
|                                        |                                                                                                                                                                                                                               |                 |                                                                                                                                                                                                     |
| $\begin{cases} x \\ x \end{cases}$ So, | x and $y$ be the number of male members and the number of female obsers respectively.<br>y = 180<br>y = (1+40%)y<br>y = 180<br>y = (1+40%)y<br>we have $y = 1.4y + y = 180$ .<br>y = 1.4y + y = 180.                          | }1A+1A<br>1M    | for getting a linear equation in $x$ or $y$ only                                                                                                                                                    |
| Thu                                    | s, the difference of the number of male members and the number of female nbers is 30.                                                                                                                                         | 1A              |                                                                                                                                                                                                     |
| x = Solv<br>Not<br>Thu                 | x be the number of male members. $(1+40%)(180-x)$ ving, we have $x=105$ . e that $105-(180-105)=30$ . s, the difference of the number of male members and the number of female mbers is 30.                                   | 1A+1A+1M        | $\begin{cases} 1A & \text{for } x = (1+40\%)y \\ +1A & \text{for } y = 180-x \\ +1M & \text{for a linear equation in one unknow} \end{cases}$                                                       |
|                                        | the difference of the number of male members and the number of female members $(180)(40\%)$ $00\% + (100\% + 40\%)$                                                                                                           | 1A+1A+1M        | 1A for numerator + 1A for denominator + 1M for fraction                                                                                                                                             |
| $\frac{180}{d} = \frac{1}{1}$          | d be the difference of the number of male members and number of female members. $\frac{0+d}{2} = \left(\frac{180-d}{2}\right)(1+40\%)$ is, the difference of the number of male members and the number of female mbers is 30. | 1A+1A+1M<br>1A  | $\begin{cases} 1A \text{ for } \frac{180+d}{2} \text{ or } \frac{180-d}{2} \\ +1A \text{ for } \left(\frac{180-d}{2}\right)(1+40\%) \\ +1M \text{ for a linear equation in one unknow} \end{cases}$ |
| 1                                      |                                                                                                                                                                                                                               | (4)             |                                                                                                                                                                                                     |
|                                        |                                                                                                                                                                                                                               |                 | at a                                                                                                                                                                                                |
|                                        | 45                                                                                                                                                                                                                            |                 |                                                                                                                                                                                                     |

|    |     | Solution                                                                                                                                                                                                                                                                             | Marks           | Remarks                                  |
|----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------|
| 6. | (a) | x+6 < 6(x+11) $x+6 < 6x+66$ $x-6x < 66-6$ $-5x < 60$ $x > -12$                                                                                                                                                                                                                       | 1M<br>1A        | for putting $x$ on one side              |
|    |     | Therefore, we have $x > -12$ or $x \le -5$ .<br>Thus, the solutions of (*) are all real numbers.                                                                                                                                                                                     | 1A              |                                          |
|    | (b) | -1                                                                                                                                                                                                                                                                                   | 1A<br>(4)       |                                          |
|    |     |                                                                                                                                                                                                                                                                                      |                 |                                          |
| 7. | (a) | $\angle AOB$ $= 135^{\circ} - 75^{\circ}$ $= 60^{\circ}$                                                                                                                                                                                                                             | 1A              |                                          |
|    | (b) | Since $AO = BO$ , we have $\angle OAB = \angle OBA$ .<br>Note that $\angle OAB + \angle OBA + 60^\circ = 180^\circ$ .<br>Therefore, we have $\angle OAB = \angle OBA = 60^\circ$ .<br>So, $\triangle AOB$ is an equilateral triangle.<br>The perimeter of $\triangle AOB$<br>= 3(12) | 1M              | can be absorbed                          |
|    | (c) | = 36<br>3                                                                                                                                                                                                                                                                            | 1A<br>1A        |                                          |
|    |     |                                                                                                                                                                                                                                                                                      | (4)             | el e |
| 8. | (a) | Let $f(x) = hx + kx^2$ , where $h$ and $k$ are non-zero constants.<br>So, we have $3h + 9k = 48$ and $9h + 81k = 198$ .<br>Solving, we have $h = 13$ and $k = 1$ .<br>Thus, we have $f(x) = 13x + x^2$ .                                                                             | 1A<br>1M<br>1A  | for either substitution                  |
|    | (b) | $f(x) = 90$ $13x + x^{2} = 90$ $x^{2} + 13x - 90 = 0$ $(x - 5)(x + 18) = 0$ $x = 5 \text{ or } x = -18$                                                                                                                                                                              | 1M<br>1A<br>(5) |                                          |
|    |     | 46                                                                                                                                                                                                                                                                                   |                 |                                          |

|     | Solution                    | Marks | Remarks                            |
|-----|-----------------------------|-------|------------------------------------|
| (a) | x                           |       | 7                                  |
| . , | = 2 + 4                     | Ves V |                                    |
|     | = 6                         | 1A    |                                    |
|     | <i>y</i>                    |       |                                    |
|     | = 37 – 15                   |       |                                    |
|     | = 22                        | 1A    |                                    |
|     | -                           |       |                                    |
|     | z = 37 + 3                  |       |                                    |
|     | = 40                        | 1A    |                                    |
|     | ×                           | -5    |                                    |
| (b) | The required probability    |       |                                    |
|     | $=\frac{22-6}{40}$          | 1M    | for $\frac{y-x}{z}$                |
|     | 40                          |       | Z                                  |
|     | $=\frac{2}{5}$              | 1A    | 0.4                                |
|     | 3                           |       |                                    |
|     | Note that $b=7$ and $c=9$ . |       |                                    |
|     | The required probability    |       | 8                                  |
|     | $=\frac{7+9}{100}$          | 1M    | for $\frac{b+c}{z}$                |
|     | 40                          |       | Z                                  |
|     | $=\frac{2}{5}$              | 1A    | 0.4                                |
|     |                             |       |                                    |
|     | Note that $a = 2$ .         |       |                                    |
|     | The required probability    |       | 51                                 |
|     | $=\frac{40-2-4-15-3}{}$     | 1M    | for $\frac{z - a - 4 - 15 - 3}{z}$ |
|     | 40                          |       | Z                                  |
|     | $=\frac{2}{5}$              | 1A    | 0.4                                |
|     | 3                           | (5)   |                                    |
|     |                             |       |                                    |
|     |                             |       |                                    |
|     |                             |       |                                    |
|     |                             |       |                                    |
|     |                             |       |                                    |
|     |                             |       |                                    |
|     |                             |       |                                    |
|     |                             |       |                                    |
|     |                             |       |                                    |
|     |                             |       |                                    |
|     |                             |       |                                    |
|     |                             |       | 8 7                                |
|     |                             |       |                                    |
|     |                             |       |                                    |
|     |                             |       |                                    |
|     |                             |       |                                    |
|     |                             |       |                                    |
|     |                             |       |                                    |
|     |                             |       |                                    |
|     |                             |       |                                    |
|     |                             |       |                                    |

|        | Solution                                                                                                                                                                                                                                     | Marks     | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0. (a) | Let $(x, y)$ be the coordinates of $P$ .<br>$\sqrt{(x-5)^2 + (y-7)^2} = \sqrt{(x-13)^2 + (y-1)^2}$<br>4x-3y-24=0<br>Thus, the equation of $\Gamma$ is $4x-3y-24=0$ .                                                                         | 1M<br>1A  | or equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | The slope of $AB$ $= \frac{7-1}{5-13}$ $= \frac{-3}{4}$ The slope of $\Gamma$ $= \frac{4}{3}$ The mid-point of $AB$ $= \left(\frac{5+13}{2}, \frac{7+1}{2}\right)$ $= (9,4)$ Therefore, the equation of $\Gamma$ is $y-4=\frac{4}{3}(x-9)$ . | 1M        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | Thus, the equation of $\Gamma$ is $4x-3y-24=0$ .                                                                                                                                                                                             | 1A<br>(2) | or equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (b)    | Putting $y=0$ in $4x-3y-24=0$ , we have $x=6$ .<br>So, the coordinates of $H$ are $(6,0)$ .<br>Putting $x=0$ in $4x-3y-24=0$ , we have $y=-8$ .<br>Therefore, the coordinates of $K$ are $(0,-8)$ .                                          | 1M        | either one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | The diameter of $C$<br>= $HK$<br>= $\sqrt{(6-0)^2 + (0-(-8))^2}$<br>= $10$<br>The circumference of $C$<br>= $10 \pi$                                                                                                                         | 1M        | , and a second s |
|        | ≈ 31.41592654<br>> 30                                                                                                                                                                                                                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | Thus, the claim is correct.                                                                                                                                                                                                                  | 1A<br>(3) | f.t.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |                                                                                                                                                                                                                                              |           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                                                                                                                                                                                              | ×         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                                                                                                                                                                                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                                                                                                                                                                                                              |           | 8 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        | 48                                                                                                                                                                                                                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|       | Solution                                                                                                                                    | Marks     | Remarks                               |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------|
| . (a) | Let $V \text{ cm}^3$ be the final volume of milk in the vessel.                                                                             |           |                                       |
|       | $\frac{V - 444\pi}{V} = \left(\frac{12}{16}\right)^3$                                                                                       | 1M+1A     | 1M for $\left(\frac{12}{16}\right)^3$ |
|       | $\frac{V}{V} - \left(\frac{16}{16}\right)$ $V = 768 \pi$                                                                                    | 1A        | (16)                                  |
|       | Thus, the final volume of milk in the vessel is $768\pi \text{ cm}^3$ .                                                                     | IA        | #                                     |
|       |                                                                                                                                             |           |                                       |
|       | Let $V \text{ cm}^3$ and $r \text{ cm}$ be the final volume of milk and the final radius of the surface of milk in the vessel respectively. |           |                                       |
|       | $V = \frac{1}{3}\pi r^2 (16)$                                                                                                               |           |                                       |
|       | $V - 444\pi = \frac{1}{3}\pi \left(\frac{12r}{16}\right)^2 (12)$                                                                            |           | ž                                     |
|       | So, we have $V - 444\pi = \frac{1}{3}\pi \left(\frac{12}{16}\right)^2 \left(\frac{3V}{16\pi}\right)$ (12).                                  | 1M+1A     | 1M for eliminating $r^2$              |
|       | Solving, we have $V = 768\pi$ .                                                                                                             | 1A        | 9                                     |
|       | Thus, the final volume of milk in the vessel is $768\pi$ cm <sup>3</sup> .                                                                  |           | 1                                     |
|       |                                                                                                                                             | (3)       | 3                                     |
| (b)   | Let $r$ cm be the final radius of the surface of milk in the vessel.                                                                        |           |                                       |
|       | $\frac{1}{3}\pi r^2(16) = 768\pi$                                                                                                           | 1M        |                                       |
|       | r = 12                                                                                                                                      |           |                                       |
|       | The final area of the wet curved surface of the vessel                                                                                      |           |                                       |
|       | $= \pi (12)\sqrt{12^2 + 16^2}$ $= 240\pi$                                                                                                   | 1M        |                                       |
|       | $\approx 753.9822369 \text{ cm}^2$                                                                                                          |           |                                       |
|       | < 800 cm <sup>2</sup>                                                                                                                       | 1.4       | C.                                    |
|       | Thus, the claim is disagreed.                                                                                                               | 1A<br>(3) | f.t.                                  |
|       |                                                                                                                                             |           |                                       |
|       |                                                                                                                                             |           |                                       |
|       |                                                                                                                                             |           |                                       |
|       |                                                                                                                                             |           | ,                                     |
|       |                                                                                                                                             |           |                                       |
|       |                                                                                                                                             |           |                                       |
|       |                                                                                                                                             |           |                                       |
|       |                                                                                                                                             |           |                                       |
|       | e e                                                                                                                                         |           |                                       |
|       |                                                                                                                                             |           |                                       |
|       |                                                                                                                                             |           |                                       |
|       |                                                                                                                                             |           |                                       |
|       |                                                                                                                                             |           |                                       |
|       | 49                                                                                                                                          |           |                                       |

| gamenta. |     |             | Solution                                                                                                                                                                        | Marks        | Remarks                      |
|----------|-----|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------|
| 2.       | (a) | a =<br>Note | a = 11 + b + 4<br>b + 4<br>c + b + 11 and $4 < b < 10$ .                                                                                                                        | 1M           | * ±                          |
|          |     | Thus        | s, we have $\begin{cases} a = 12 \\ b = 8 \end{cases}$ or $\begin{cases} a = 13 \\ b = 9 \end{cases}$ .                                                                         | 1A+1A<br>(3) | 1A for one pair + 1A for all |
|          | (b) | (i)         | The median is the greatest when the ages of these four children are 7, 8, 9 and 10.  The greatest possible median of the ages of the children in the group = 8                  | 1M<br>1A     |                              |
|          |     | (ii)        | The mean is the least when the ages of these four children are $6$ , $7$ , $8$ and $9$ . By (a), there are two cases.                                                           | 1M           |                              |
|          |     |             | Case 1: $a = 12$ and $b = 8$<br>The mean of the ages of the children in the group $= \frac{12(6) + 13(7) + 12(8) + 9(9) + 4(10)}{12 + 13 + 12 + 9 + 4}$ $= 7.6$                 | ,            | er<br>e                      |
|          |     |             | Case 2: $a = 13$ and $b = 9$<br>The mean of the ages of the children in the group $= \frac{12(6) + 14(7) + 12(8) + 10(9) + 4(10)}{12 + 14 + 12 + 10 + 4}$ $\approx 7.615384615$ |              |                              |
|          |     |             | Thus, the least possible mean of the ages of the children in the group is $7.6$ .                                                                                               | 1A<br>(4)    | f.t.                         |
|          |     |             | o e e                                                                                                                                                                           |              | g .                          |
|          |     |             | a<br>a                                                                                                                                                                          | o .          |                              |
|          |     |             |                                                                                                                                                                                 |              | 2                            |
|          |     |             |                                                                                                                                                                                 |              |                              |

|     | Soluti                                        | on                                             | Marks | Remarks |
|-----|-----------------------------------------------|------------------------------------------------|-------|---------|
| (a) | In $\triangle ACD$ and $\triangle ABE$ ,      |                                                |       |         |
| (a) | $\angle ADC = \angle AEB$                     | (given)                                        |       |         |
|     | AD = AE                                       | ( sides opp. equal ∠s )                        |       |         |
|     | CE = BD                                       | ( given )                                      |       |         |
|     | CE - BD<br>CE + DE = BD + DE                  | (givon)                                        |       |         |
|     | CD = BE                                       |                                                |       |         |
|     | $\triangle ACD \cong \triangle ABE$           | (SAS)                                          |       |         |
|     |                                               |                                                |       |         |
|     | Marking Scheme: Case 1 Any correct proof with | th correct reasons                             | 2     |         |
|     | Case 2 Any correct proof w                    | thout reasons                                  |       |         |
|     | Case 2 7 my correct proof w                   | tilout rousons.                                | (2)   |         |
|     |                                               |                                                |       |         |
| (b) |                                               | m and $\angle AMD = \angle AME = 90^{\circ}$ . |       |         |
|     | AM                                            |                                                |       |         |
|     | $=\sqrt{AD^2-DM^2}$                           |                                                | 1M    |         |
|     | $=\sqrt{15^2-9^2}$                            |                                                |       |         |
|     | $=\sqrt{144}$                                 |                                                |       |         |
|     | $= \sqrt{144}$<br>= 12 cm                     |                                                | 1A    |         |
|     | - 12 VIII                                     |                                                |       |         |
|     | (ii) $AB^2$                                   |                                                |       |         |
|     | $=AM^2 + BM^2$                                |                                                |       |         |
|     | $= 144 + (7+9)^2$                             |                                                |       |         |
|     | = 400                                         |                                                |       |         |
|     | By (a), we have $AE = AD$                     | =15cm                                          | 1M    |         |
|     | $AB^2 + AE^2$                                 |                                                |       | œ       |
|     | $AB + AE$ $= 400 + 15^{2}$                    |                                                |       |         |
|     | = 400 + 13<br>= 625                           |                                                |       | F       |
|     | $=(7+18)^2$                                   |                                                |       |         |
|     |                                               |                                                |       |         |
|     | $= (BD + DE)^2$                               |                                                |       |         |
|     | $=BE^2$                                       |                                                | 1M    | C.      |
|     | Thus, $\triangle ABE$ is a right-an           | gled triangle.                                 | 1A    | f.t.    |
|     |                                               |                                                | (5)   |         |
|     |                                               |                                                |       |         |
|     |                                               |                                                |       |         |
|     |                                               | ·                                              |       |         |
|     |                                               |                                                | 17    |         |
|     |                                               |                                                |       |         |
|     | ê                                             |                                                |       |         |
|     |                                               |                                                |       |         |
|     |                                               |                                                |       |         |
|     |                                               |                                                |       |         |
|     |                                               |                                                |       |         |
|     |                                               |                                                |       |         |
|     |                                               |                                                |       |         |

|         | Solution                                                                                                                    | Marks        | Remarks                  |
|---------|-----------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------|
| 14. (a) | Note that $p(2) = 152 + 4a + 2b + c$ and $p(-2) = 40 + 4a - 2b + c$ .<br>Since $p(2) = p(-2)$ , we have $b = -28$ .         | 1M           |                          |
|         | By comparing the coefficients of $x^4$ , we have $l=3$ .<br>Note that the coefficients of $x^3$ and $x$ in the expansion of | 1A           |                          |
|         | (3 $x^2$ +5 $x$ +8)(2 $x^2$ + $mx$ + $n$ ) are 3 $m$ +10 and 8 $m$ +5 $n$ respectively.                                     |              |                          |
|         | So, we have $3m+10 = 7$ and $8m+5n = -28$ .                                                                                 | 1M           |                          |
|         | Solving, we have $m = -1$ and $n = -4$ .                                                                                    | 1A+1A<br>(5) | _                        |
| (b)     | p(x) = 0                                                                                                                    | 20 180       |                          |
|         | $(3x^2 + 5x + 8)(2x^2 - x - 4) = 0$ (by (a))                                                                                |              |                          |
|         | $3x^2 + 5x + 8 = 0$ or $2x^2 - x - 4 = 0$                                                                                   |              |                          |
|         | $5^2 - 4(3)(8)$                                                                                                             | 1M .         |                          |
|         | = -71<br>< 0                                                                                                                | 1A           |                          |
|         | So, the quadratic equation $3x^2 + 5x + 8 = 0$ does not have real roots.                                                    | 1M+1A        | either one<br>either one |
|         | $(-1)^2 - 4(2)(-4)$                                                                                                         |              |                          |
|         | = 33                                                                                                                        |              | either on                |
|         | > 0<br>Therefore, the quadratic equation $2x^2 - x - 4 = 0$ has 2 real roots.                                               |              |                          |
|         | Therefore, the quadratic equation $2x - x - 4 = 0$ has 2 feat foots.                                                        |              |                          |
|         | Hence, the equation $(3x^2 + 5x + 8)(2x^2 - x - 4) = 0$ has 2 real roots.                                                   |              |                          |
|         | Thus, the equation $p(x) = 0$ has 2 real roots.                                                                             | 1A           | f.t.                     |
|         |                                                                                                                             | (5)          |                          |
|         |                                                                                                                             | -            |                          |
|         | ∞ .                                                                                                                         |              |                          |
|         |                                                                                                                             |              |                          |
|         |                                                                                                                             |              |                          |
|         |                                                                                                                             |              |                          |
|         |                                                                                                                             |              |                          |
|         |                                                                                                                             |              |                          |
|         |                                                                                                                             |              |                          |
|         |                                                                                                                             |              |                          |
|         |                                                                                                                             |              |                          |
|         |                                                                                                                             |              |                          |
|         |                                                                                                                             |              |                          |
|         |                                                                                                                             |              |                          |
|         |                                                                                                                             |              |                          |
|         |                                                                                                                             |              |                          |
|         |                                                                                                                             |              |                          |
|         |                                                                                                                             |              |                          |
|         |                                                                                                                             |              | 9                        |
|         | 52                                                                                                                          |              |                          |

| -  | Solution                                                                                                                                                                                                                                   | Marks     | Remarks                           |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------|
| 5. | The required probability                                                                                                                                                                                                                   |           |                                   |
|    | $=\frac{C_4^6 4! 5!}{1}$                                                                                                                                                                                                                   | 13.6.13.6 |                                   |
|    | $=\frac{1}{(4+5)!}$                                                                                                                                                                                                                        | 1M+1M     | 1M for denominator + 1M for 4!    |
|    |                                                                                                                                                                                                                                            |           |                                   |
|    | $=\frac{43\ 200}{362\ 880}$                                                                                                                                                                                                                |           |                                   |
|    |                                                                                                                                                                                                                                            |           | VIII                              |
|    | $=\frac{5}{42}$                                                                                                                                                                                                                            | 1A        | r.t. 0.119                        |
|    |                                                                                                                                                                                                                                            |           |                                   |
|    | The required probability                                                                                                                                                                                                                   |           |                                   |
|    | $= \frac{4!5! + 4!5!(4)(2) + 4!5!(3) + 4!5!(3)}{(4+5)!}$                                                                                                                                                                                   | 1M+1M     | 1M for denominator + 1M for 4!    |
|    |                                                                                                                                                                                                                                            |           |                                   |
|    | $=\frac{43\ 200}{}$                                                                                                                                                                                                                        |           |                                   |
|    | 362 880                                                                                                                                                                                                                                    |           |                                   |
|    | $=\frac{5}{42}$                                                                                                                                                                                                                            | 1A        | r.t. 0.119                        |
|    | 42                                                                                                                                                                                                                                         | IA.       | 1.t. 0.119                        |
|    |                                                                                                                                                                                                                                            |           |                                   |
|    | The required probability                                                                                                                                                                                                                   |           |                                   |
|    | $= \left(\frac{4}{4}\right)\left(\frac{3}{3}\right)\left(\frac{2}{2}\right)\left(\frac{1}{1}\right)\left(\frac{5}{9}\right)\left(\frac{4}{8}\right)\left(\frac{3}{7}\right)\left(\frac{2}{6}\right)\left(\frac{1}{5}\right)(1+(4)(2)+3+3)$ | 1M+1M     | 1M for denominator                |
|    |                                                                                                                                                                                                                                            | İ         | + 1M for (4)(3)(2)(1)(5)(4)(3)(2) |
|    | $=\frac{43200}{262000}$                                                                                                                                                                                                                    |           |                                   |
|    | 362 880                                                                                                                                                                                                                                    |           | 3                                 |
|    | $=\frac{5}{42}$                                                                                                                                                                                                                            | 1A        | r.t. 0.119                        |
|    | 42                                                                                                                                                                                                                                         |           |                                   |
|    |                                                                                                                                                                                                                                            | (3)       | _                                 |
|    |                                                                                                                                                                                                                                            |           |                                   |
|    |                                                                                                                                                                                                                                            |           |                                   |
|    | 8                                                                                                                                                                                                                                          |           |                                   |
| 6  | Let $\sigma$ marks be the standard deviation of the distribution.                                                                                                                                                                          | <u> </u>  |                                   |
| 0. |                                                                                                                                                                                                                                            |           |                                   |
|    | $\frac{22-61}{\sigma} = -2.6$                                                                                                                                                                                                              | 1M        |                                   |
|    | $\sigma = 15$                                                                                                                                                                                                                              |           |                                   |
|    |                                                                                                                                                                                                                                            |           | either one                        |
|    | The score of Mary                                                                                                                                                                                                                          |           |                                   |
|    | $=61+1.4\sigma$                                                                                                                                                                                                                            |           |                                   |
|    | =61+1.4(15)                                                                                                                                                                                                                                |           |                                   |
|    | = 82 marks                                                                                                                                                                                                                                 | 1A        |                                   |
|    |                                                                                                                                                                                                                                            |           | **                                |
|    | The difference of the score of Mary and the score of Albert                                                                                                                                                                                |           |                                   |
|    | = 82 - 22<br>= 60 months                                                                                                                                                                                                                   |           | <i>□</i>                          |
|    | = 60 marks                                                                                                                                                                                                                                 |           |                                   |
|    | > 59 marks                                                                                                                                                                                                                                 |           | ± 1                               |
|    | Note that the year of the distribution is at least 41, 1999.                                                                                                                                                                               |           |                                   |
|    | Note that the range of the distribution is at least the difference of the score of Mary and the score of Albert.                                                                                                                           |           |                                   |
|    | Therefore, the range of the distribution exceeds 59 marks.                                                                                                                                                                                 |           |                                   |
|    | Thus, the claim is incorrect.                                                                                                                                                                                                              | 1A        | f.t.                              |
|    |                                                                                                                                                                                                                                            | (3)       | timuses fel.                      |
|    |                                                                                                                                                                                                                                            |           |                                   |
|    |                                                                                                                                                                                                                                            |           |                                   |
|    |                                                                                                                                                                                                                                            |           |                                   |
|    |                                                                                                                                                                                                                                            |           |                                   |
|    |                                                                                                                                                                                                                                            |           |                                   |
|    | 53                                                                                                                                                                                                                                         | 1         |                                   |

| -     | Solution                                                                       |     | Marks     | Remarks                               |
|-------|--------------------------------------------------------------------------------|-----|-----------|---------------------------------------|
| . (a) | Let $d$ be the common difference of the sequence.<br>555 = 666 + (38 - 1)d     |     | 1M        |                                       |
|       | d = -3                                                                         |     | 1A        |                                       |
|       | The common difference of the sequence                                          |     | -         |                                       |
|       | $=\frac{555-666}{38-1}$                                                        |     | 1M        |                                       |
|       | 38-1                                                                           |     | 1A        |                                       |
|       |                                                                                |     | (2)       |                                       |
| (b)   | $\frac{n}{2}(2(666) + (n-1)(-3)) > 0$                                          |     | 1M+1A     |                                       |
|       | $1335n - 3n^2 > 0$                                                             |     |           |                                       |
|       | n(n-445) < 0                                                                   |     |           |                                       |
|       | 0 < n < 445                                                                    |     |           |                                       |
|       | Thus, the greatest value of $n$ is 444.                                        |     | 1A<br>(3) |                                       |
|       |                                                                                |     | (3)       |                                       |
|       |                                                                                |     |           |                                       |
|       | · · · · · · · · · · · · · · · · · · ·                                          |     |           |                                       |
| . (a) | f(x)                                                                           |     |           |                                       |
|       | $=\frac{-1}{3}x^2 + 12x - 121$                                                 |     |           |                                       |
|       |                                                                                |     |           |                                       |
|       | $=\frac{-1}{3}(x^2-36x)-121$                                                   |     |           |                                       |
|       | $= \frac{-1}{3}(x^2 - 36x + 18^2 - 18^2) - 121$                                | - 1 | 1M        |                                       |
|       | $=\frac{-1}{3}(x-18)^2-13$                                                     |     |           |                                       |
|       |                                                                                |     |           |                                       |
|       | Thus, the coordinates of the vertex are $(18, -13)$ .                          |     | 1A        |                                       |
|       |                                                                                |     | (2)       |                                       |
| (b)   | g(x)                                                                           |     | 13.5      | ø                                     |
|       | =f(x)+13                                                                       |     | 1M        | -T -                                  |
|       | $=\frac{-1}{3}(x-18)^2$                                                        | -   | 1A        | accept $\frac{-1}{3}x^2 + 12x - 108$  |
|       |                                                                                |     | (2)       |                                       |
| (c)   | Note that $\frac{-1}{3}x^2 - 12x - 121 = f(-x)$ .                              |     |           |                                       |
|       | Thus, the transformation is the reflection with respect to the <i>y</i> -axis. |     | 1A+1A     | 1A for reflection + 1A for all corre  |
|       | Thus, the transformation is the reflection with respect to the y axis.         |     | 1711171   | TITIO TOROCTOR + TITIO OR CORE        |
|       | Note that $\frac{-1}{3}x^2 - 12x - 121 = f(x+36)$ .                            |     |           | 5 0                                   |
|       | Thus, the transformation is the leftward translation of 36 units.              |     | 1A+1A     | 1A for translation + 1A for all corre |
|       |                                                                                |     | (2)       |                                       |
|       |                                                                                |     |           |                                       |
|       |                                                                                |     |           | ×                                     |
|       |                                                                                |     |           | -                                     |

|     | Solution                                                                                                                                                                                                                                                  | Marks | Remarks      |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|
| (a) | By sine formula, $ \frac{AB}{\sin \angle ADB} = \frac{BD}{\sin \angle BAD} $ $ \frac{10}{\sin \angle ADB} = \frac{15}{\sin 86^{\circ}} $ $ \angle ADB \approx 41.68560132^{\circ} \text{ or } \angle ADB \approx 138.3143987^{\circ} \text{ (rejected)} $ | 1M    | -            |
|     | $\angle ABD = 180^{\circ} - \angle BAD - \angle ADB$<br>$\angle ABD \approx 52.31439868^{\circ}$<br>$\angle ABD \approx 52.3^{\circ}$                                                                                                                     | 1A    | r.t. 52.3°   |
|     | By cosine formula,<br>$CD^2 = BC^2 + BD^2 - 2(BC)(BD)\cos \angle CBD$                                                                                                                                                                                     | 1M    |              |
|     | $CD^2 \approx 8^2 + 15^2 - 2(8)(15)\cos 43^\circ$<br>$CD \approx 10.65246974$<br>$CD \approx 10.7 \text{ cm}$                                                                                                                                             | 1A    | r.t. 10.7 cm |
|     |                                                                                                                                                                                                                                                           | (4)   |              |
| (b) | Since $AC^2 + BC^2 = AB^2$ , we have $\angle ACB = 90^\circ$ .                                                                                                                                                                                            |       |              |
|     | By cosine formula,                                                                                                                                                                                                                                        |       |              |
|     | $AD^{2} = AB^{2} + BD^{2} - 2(AB)(BD)\cos \angle ABD$<br>$AD^{2} \approx 10^{2} + 15^{2} - 2(10)(15)\cos 52.31439868^{\circ}$                                                                                                                             |       |              |
|     | $AD \approx 10^{-4.15} - 2(10)(15)\cos 32.31439868^{\circ}$<br>$AD \approx 11.89964475$                                                                                                                                                                   |       | 1            |
|     | By cosine formula,<br>$AD^{2} = AC^{2} + CD^{2} - 2(AC)(CD)\cos \angle ACD$                                                                                                                                                                               |       |              |
|     | $\cos \angle ACD \approx \frac{6^2 + (10.65246974)^2 - (11.89964475)^2}{2(6)(10.65246794)}$                                                                                                                                                               |       | ×            |
|     | $\angle ACD \approx 86.46867599^{\circ}$<br>So, $\angle ACD$ is not a right angle.                                                                                                                                                                        | 1M    |              |
|     | Hence, the angle between $AB$ and the face $BCD$ is not $\angle ABC$ .                                                                                                                                                                                    | 1111  | •            |
|     | Thus, the claim is disagreed.                                                                                                                                                                                                                             | 1A    | f.t.         |
|     | Since $AC^2 + BC^2 = AB^2$ , we have $\angle ACB = 90^\circ$ .                                                                                                                                                                                            |       |              |
|     | By cosine formula,<br>$AD^{2} = AB^{2} + BD^{2} - 2(AB)(BD) \cos \angle ABD$                                                                                                                                                                              |       | =            |
|     | $AD^2 \approx 10^2 + 15^2 - 2(10)(15)\cos 52.31439868^\circ$<br>$AD^2 \approx 141.6015451$                                                                                                                                                                |       |              |
|     | $AC^2 + CD^2 \approx 6^2 + (10.65246974)^2$                                                                                                                                                                                                               |       |              |
|     | $AC^2 + CD^2 \approx 149.4751116$                                                                                                                                                                                                                         |       |              |
|     | Hence, we have $AD^2 \neq AC^2 + CD^2$ .<br>So, $\angle ACD$ is not a right angle.                                                                                                                                                                        | 1M    |              |
|     | Hence, the angle between $AB$ and the face $BCD$ is not $\angle ABC$ . Thus, the claim is disagreed.                                                                                                                                                      | 1.4   | f.t.         |
|     | Thus, the claim is disagreed.                                                                                                                                                                                                                             | 1A    | 1.1.         |

|                                                                                                                                                                                                                                                                                                                                                                                                              | tion                                                                                                                                                                                                                                              | Marks              | Remarks |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------|
| Note that $J$ is the centre of the                                                                                                                                                                                                                                                                                                                                                                           | circle OPQ .                                                                                                                                                                                                                                      |                    |         |
| $\angle IPO = \angle IPQ$                                                                                                                                                                                                                                                                                                                                                                                    | (in-centre of Δ)                                                                                                                                                                                                                                  |                    |         |
| Also note that $P$ , $I$ and $J$ are                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                   |                    |         |
| $\angle JPO = \angle JPQ$                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                   |                    |         |
| JO = JP                                                                                                                                                                                                                                                                                                                                                                                                      | ( radii )                                                                                                                                                                                                                                         |                    |         |
| $\angle JOP = \angle JPO$                                                                                                                                                                                                                                                                                                                                                                                    | ( base ∠s, isos. ∆ )                                                                                                                                                                                                                              |                    |         |
| JP = JQ                                                                                                                                                                                                                                                                                                                                                                                                      | ( radii )                                                                                                                                                                                                                                         |                    |         |
| $\angle JPQ = \angle JQP$                                                                                                                                                                                                                                                                                                                                                                                    | (base $\angle$ s, isos. $\triangle$ )                                                                                                                                                                                                             |                    |         |
| $\angle JOP = \angle JQP$                                                                                                                                                                                                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                             |                    |         |
| JP = JP                                                                                                                                                                                                                                                                                                                                                                                                      | ( common side )                                                                                                                                                                                                                                   |                    |         |
| $\Delta JOP \cong \Delta JQP$                                                                                                                                                                                                                                                                                                                                                                                | (AAS)                                                                                                                                                                                                                                             |                    |         |
| Thus, we have $OP = PQ$ .                                                                                                                                                                                                                                                                                                                                                                                    | ( corr. sides, ≅∆s )                                                                                                                                                                                                                              |                    |         |
| Note that $J$ is the centre of the                                                                                                                                                                                                                                                                                                                                                                           | circle OPQ.                                                                                                                                                                                                                                       |                    |         |
| $\angle IPO = \angle IPQ$                                                                                                                                                                                                                                                                                                                                                                                    | (in-centre of ∆)                                                                                                                                                                                                                                  |                    | 52      |
| Also note that $P$ , $I$ and $J$ are                                                                                                                                                                                                                                                                                                                                                                         | collinear.                                                                                                                                                                                                                                        |                    |         |
| $\angle JPO = \angle JPQ$                                                                                                                                                                                                                                                                                                                                                                                    | ×                                                                                                                                                                                                                                                 |                    |         |
| JP = JQ                                                                                                                                                                                                                                                                                                                                                                                                      | ( radii )                                                                                                                                                                                                                                         |                    |         |
| $\angle JQP = \angle JPQ$                                                                                                                                                                                                                                                                                                                                                                                    | (base $\angle$ s, isos. $\Delta$ )                                                                                                                                                                                                                |                    |         |
| = ∠JPO                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                                                                                                                                                                                 |                    |         |
| $2\angle POQ = \angle PJQ$                                                                                                                                                                                                                                                                                                                                                                                   | ( $\angle$ at centre twice $\angle$ at circumference )                                                                                                                                                                                            |                    |         |
| $= 180^{\circ} - \angle JPQ - \angle JQ$                                                                                                                                                                                                                                                                                                                                                                     | $P \ (\angle \text{sum of } \Delta)$                                                                                                                                                                                                              |                    |         |
| $=180^{\circ}-\angle JPQ-\angle JP$                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                 |                    |         |
| $= \angle POQ + \angle OQP$                                                                                                                                                                                                                                                                                                                                                                                  | $(\angle sum of \Delta)$                                                                                                                                                                                                                          |                    |         |
| $\angle POQ = \angle OQP$                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                   |                    |         |
| Thus, we have $OP = PQ$ .                                                                                                                                                                                                                                                                                                                                                                                    | ( sides opp. equal ∠s )                                                                                                                                                                                                                           |                    |         |
|                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                   |                    |         |
|                                                                                                                                                                                                                                                                                                                                                                                                              | circle OPO                                                                                                                                                                                                                                        |                    |         |
| Note that $J$ is the centre of the                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                   |                    |         |
| $\angle IPO = \angle IPQ$                                                                                                                                                                                                                                                                                                                                                                                    | ( in-centre of $\Delta$ )                                                                                                                                                                                                                         |                    |         |
| $\angle IPO = \angle IPQ$<br>Also note that $P$ , $I$ and $J$ are                                                                                                                                                                                                                                                                                                                                            | ( in-centre of $\Delta$ )                                                                                                                                                                                                                         |                    |         |
| $\angle IPO = \angle IPQ$<br>Also note that $P$ , $I$ and $J$ are $\angle JPO = \angle JPQ$                                                                                                                                                                                                                                                                                                                  | ( in-centre of $\Delta$ ) collinear.                                                                                                                                                                                                              |                    | ÷       |
| $\angle IPO = \angle IPQ$<br>Also note that $P$ , $I$ and $J$ are $\angle JPO = \angle JPQ$<br>JO = JP                                                                                                                                                                                                                                                                                                       | ( in-centre of $\Delta$ ) collinear.                                                                                                                                                                                                              |                    | ·       |
| $\angle IPO = \angle IPQ$<br>Also note that $P$ , $I$ and $J$ are $\angle JPO = \angle JPQ$<br>JO = JP<br>$\angle JOP = \angle JPO$                                                                                                                                                                                                                                                                          | ( in-centre of $\Delta$ ) collinear.<br>( radii )<br>( base $\angle$ s, isos. $\Delta$ )                                                                                                                                                          |                    | ÷       |
| $\angle IPO = \angle IPQ$<br>Also note that $P$ , $I$ and $J$ are $\angle JPO = \angle JPQ$<br>JO = JP<br>$\angle JOP = \angle JPO$<br>JP = JQ                                                                                                                                                                                                                                                               | ( in-centre of Δ ) collinear.  ( radii ) ( base ∠s, isos. Δ ) ( radii )                                                                                                                                                                           |                    | -       |
| $\angle IPO = \angle IPQ$<br>Also note that $P$ , $I$ and $J$ are $\angle JPO = \angle JPQ$<br>JO = JP<br>$\angle JOP = \angle JPO$<br>JP = JQ<br>$\angle JPQ = \angle JQP$                                                                                                                                                                                                                                  | ( in-centre of $\Delta$ ) collinear.<br>( radii )<br>( base $\angle$ s, isos. $\Delta$ )                                                                                                                                                          |                    |         |
| $\angle IPO = \angle IPQ$<br>Also note that $P$ , $I$ and $J$ are $\angle JPO = \angle JPQ$<br>JO = JP<br>$\angle JOP = \angle JPO$<br>JP = JQ<br>$\angle JPQ = \angle JQP$<br>$\angle JOP = \angle JQP$                                                                                                                                                                                                     | (in-centre of $\Delta$ ) collinear.  (radii) (base $\angle$ s, isos. $\Delta$ ) (radii) (base $\angle$ s, isos. $\Delta$ )                                                                                                                        |                    | -       |
| $\angle IPO = \angle IPQ$<br>Also note that $P$ , $I$ and $J$ are $\angle JPO = \angle JPQ$<br>JO = JP<br>$\angle JOP = \angle JPO$<br>JP = JQ<br>$\angle JPQ = \angle JQP$<br>$\angle JOP = \angle JQP$<br>JO = JQ                                                                                                                                                                                          | (in-centre of $\Delta$ ) collinear.  (radii) (base $\angle$ s, isos. $\Delta$ ) (radii) (base $\angle$ s, isos. $\Delta$ ) (radii)                                                                                                                |                    |         |
| $\angle IPO = \angle IPQ$ Also note that $P$ , $I$ and $J$ are $\angle JPO = \angle JPQ$ $JO = JP$ $\angle JOP = \angle JPO$ $JP = JQ$ $\angle JPQ = \angle JQP$ $\angle JOP = \angle JQP$ $\angle JOP = \angle JQP$ $\angle JOQ = \angle JQO$                                                                                                                                                               | (in-centre of $\Delta$ ) collinear.  (radii) (base $\angle$ s, isos. $\Delta$ ) (radii) (base $\angle$ s, isos. $\Delta$ )  (radii) (radii) (base $\angle$ s, isos. $\Delta$ )                                                                    |                    | -       |
| $\angle IPO = \angle IPQ$ Also note that $P$ , $I$ and $J$ are $\angle JPO = \angle JPQ$ $JO = JP$ $\angle JOP = \angle JPO$ $JP = JQ$ $\angle JPQ = \angle JQP$ $\angle JOP = \angle JQP$ $\angle JOP = \angle JQO$ $\angle JOQ = \angle JQO$ $\angle JOP - \angle JOQ = \angle JQP - \angle JQO$                                                                                                           | (in-centre of $\Delta$ ) collinear.  (radii) (base $\angle$ s, isos. $\Delta$ ) (radii) (base $\angle$ s, isos. $\Delta$ )  (radii) (radii) (base $\angle$ s, isos. $\Delta$ )                                                                    |                    |         |
| $\angle IPO = \angle IPQ$ Also note that $P$ , $I$ and $J$ are $\angle JPO = \angle JPQ$ $JO = JP$ $\angle JOP = \angle JPO$ $JP = JQ$ $\angle JPQ = \angle JQP$ $\angle JOP = \angle JQP$ $\angle JOP = \angle JQP$ $\angle JOQ = \angle JQO$ $\angle JOP - \angle JOQ = \angle JQP - \angle JQ$ $\angle POQ = \angle OQP$                                                                                  | (in-centre of $\Delta$ ) collinear.  (radii) (base $\angle$ s, isos. $\Delta$ ) (radii) (base $\angle$ s, isos. $\Delta$ )  (radii) (radii) (base $\angle$ s, isos. $\Delta$ )                                                                    |                    | -       |
| $\angle IPO = \angle IPQ$ Also note that $P$ , $I$ and $J$ are $\angle JPO = \angle JPQ$ $JO = JP$ $\angle JOP = \angle JPO$ $JP = JQ$ $\angle JPQ = \angle JQP$ $\angle JOP = \angle JQP$ $\angle JOP = \angle JQO$ $\angle JOQ = \angle JQO$ $\angle JOP - \angle JOQ = \angle JQP - \angle JQO$                                                                                                           | (in-centre of $\Delta$ ) collinear.  (radii) (base $\angle$ s, isos. $\Delta$ ) (radii) (base $\angle$ s, isos. $\Delta$ )  (radii) (radii) (base $\angle$ s, isos. $\Delta$ )                                                                    |                    |         |
| $\angle IPO = \angle IPQ$ Also note that $P$ , $I$ and $J$ are $\angle JPO = \angle JPQ$ $JO = JP$ $\angle JOP = \angle JPO$ $JP = JQ$ $\angle JPQ = \angle JQP$ $\angle JOP = \angle JQP$ $\angle JOP = \angle JQP$ $\angle JOQ = \angle JQO$ $\angle JOP - \angle JOQ = \angle JQP - \angle JQ$ $\angle POQ = \angle OQP$ Thus, we have $OP = PQ$ .                                                        | (in-centre of $\Delta$ ) collinear.  (radii) (base $\angle$ s, isos. $\Delta$ ) (radii) (base $\angle$ s, isos. $\Delta$ )  (radii) (radii) (base $\angle$ s, isos. $\Delta$ )                                                                    |                    |         |
| $\angle IPO = \angle IPQ$ Also note that $P$ , $I$ and $J$ are $\angle JPO = \angle JPQ$ $JO = JP$ $\angle JOP = \angle JPO$ $JP = JQ$ $\angle JPQ = \angle JQP$ $\angle JOP = \angle JQP$ $\angle JOP = \angle JQP$ $\angle JOQ = \angle JQO$ $\angle JOP - \angle JOQ = \angle JQP - \angle JQ$ $\angle POQ = \angle OQP$                                                                                  | (in-centre of $\Delta$ ) collinear.  (radii) (base $\angle$ s, isos. $\Delta$ ) (radii) (base $\angle$ s, isos. $\Delta$ )  (radii) (base $\angle$ s, isos. $\Delta$ )  (radii) (base $\angle$ s, isos. $\Delta$ )  (sides opp. equal $\angle$ s) | 3                  |         |
| $\angle IPO = \angle IPQ$ Also note that $P$ , $I$ and $J$ are $\angle JPO = \angle JPQ$ $JO = JP$ $\angle JOP = \angle JPO$ $JP = JQ$ $\angle JPQ = \angle JQP$ $\angle JOP = \angle JQP$ $JO = JQ$ $\angle JOQ = \angle JQO$ $\angle JOP - \angle JOQ = \angle JQP - \angle JQ$ $\angle POQ = \angle OQP$ Thus, we have $OP = PQ$ .  Marking Scheme: Case 1 Any correct proof w Case 2 Any correct proof w | (in-centre of Δ)  collinear.  (radii) (base ∠s, isos. Δ) (radii) (base ∠s, isos. Δ)  (radii) (base ∠s, isos. Δ)  (radii) (base ∠s, isos. Δ)  (oradii) (base ∠s, isos. Δ)  (oradii) (base ∠s, isos. Δ)                                             | 3 2                |         |
| $\angle IPO = \angle IPQ$ Also note that $P$ , $I$ and $J$ are $\angle JPO = \angle JPQ$ $JO = JP$ $\angle JOP = \angle JPO$ $JP = JQ$ $\angle JPQ = \angle JQP$ $\angle JOP = \angle JQP$ $JO = JQ$ $\angle JOQ = \angle JQO$ $\angle JOP - \angle JOQ = \angle JQP - \angle JQ$ $\angle POQ = \angle OQP$ Thus, we have $OP = PQ$ .  Marking Scheme: Case 1 Any correct proof w Case 2 Any correct proof w | (in-centre of Δ)  collinear.  (radii) (base ∠s, isos. Δ) (radii) (base ∠s, isos. Δ)  (radii) (base ∠s, isos. Δ)  (radii) (base ∠s, isos. Δ)  O  (sides opp. equal ∠s)                                                                             | 2<br>1             |         |
| $\angle IPO = \angle IPQ$ Also note that $P$ , $I$ and $J$ are $\angle JPO = \angle JPQ$ $JO = JP$ $\angle JOP = \angle JPO$ $JP = JQ$ $\angle JPQ = \angle JQP$ $\angle JOP = \angle JQP$ $JO = JQ$ $\angle JOQ = \angle JQO$ $\angle JOP - \angle JOQ = \angle JQP - \angle JQ$ $\angle POQ = \angle OQP$ Thus, we have $OP = PQ$ .  Marking Scheme: Case 1 Any correct proof w Case 2 Any correct proof w | (in-centre of Δ)  collinear.  (radii) (base ∠s, isos. Δ) (radii) (base ∠s, isos. Δ)  (radii) (base ∠s, isos. Δ)  (radii) (base ∠s, isos. Δ)  (oradii) (base ∠s, isos. Δ)  (oradii) (base ∠s, isos. Δ)                                             | 3<br>2<br>1<br>(3) |         |
| $\angle IPO = \angle IPQ$ Also note that $P$ , $I$ and $J$ are $\angle JPO = \angle JPQ$ $JO = JP$ $\angle JOP = \angle JPO$ $JP = JQ$ $\angle JPQ = \angle JQP$ $\angle JOP = \angle JQP$ $JO = JQ$ $\angle JOQ = \angle JQO$ $\angle JOP - \angle JOQ = \angle JQP - \angle JQ$ $\angle POQ = \angle OQP$ Thus, we have $OP = PQ$ .  Marking Scheme: Case 1 Any correct proof w Case 2 Any correct proof w | (in-centre of Δ)  collinear.  (radii) (base ∠s, isos. Δ) (radii) (base ∠s, isos. Δ)  (radii) (base ∠s, isos. Δ)  (radii) (base ∠s, isos. Δ)  (oradii) (base ∠s, isos. Δ)  (oradii) (base ∠s, isos. Δ)                                             | 2<br>1             |         |
| $\angle IPO = \angle IPQ$ Also note that $P$ , $I$ and $J$ are $\angle JPO = \angle JPQ$ $JO = JP$ $\angle JOP = \angle JPO$ $JP = JQ$ $\angle JPQ = \angle JQP$ $\angle JOP = \angle JQP$ $JO = JQ$ $\angle JOQ = \angle JQO$ $\angle JOP - \angle JOQ = \angle JQP - \angle JQ$ $\angle POQ = \angle OQP$ Thus, we have $OP = PQ$ .  Marking Scheme: Case 1 Any correct proof w Case 2 Any correct proof w | (in-centre of Δ)  collinear.  (radii) (base ∠s, isos. Δ) (radii) (base ∠s, isos. Δ)  (radii) (base ∠s, isos. Δ)  (radii) (base ∠s, isos. Δ)  (oradii) (base ∠s, isos. Δ)  (oradii) (base ∠s, isos. Δ)                                             | 2<br>1             |         |

|         | Solution                                                                                                                                                                                                                                                                                                                             | Marks          | Remarks                                                                                                                                                                  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b) (i) | Let $(h, 19)$ be the coordinates of $P$ .<br>By (a), we have $h^2 + 19^2 = (40 - h)^2 + (30 - 19)^2$ .<br>Solving, we have $h = 17$ .                                                                                                                                                                                                | 1M             |                                                                                                                                                                          |
|         | Let $x^2 + y^2 + Dx + Ey + F = 0$ be the equation of $C$ .<br>Since $C$ passes through the origin, we have $F = 0$ .<br>So, we have $17D + 19E + 650 = 0$ and $40D + 30E + 2500 = 0$ .<br>Solving, we have $D = -112$ and $E = 66$ .<br>Thus, the equation of $C$ is $x^2 + y^2 - 112x + 66y = 0$ .                                  | 1A<br>1M<br>1A | for either one $(x-56)^2 + (y+33)^2 = 65^2$                                                                                                                              |
| (ii)    | Note that the equations of $L_1$ and $L_2$ are in the form                                                                                                                                                                                                                                                                           |                |                                                                                                                                                                          |
|         | $y = \frac{3}{4}x + c$ , where c is a constant.                                                                                                                                                                                                                                                                                      |                |                                                                                                                                                                          |
|         | Putting $y = \frac{3}{4}x + c$ in $x^2 + y^2 - 112x + 66y = 0$ , we have                                                                                                                                                                                                                                                             |                |                                                                                                                                                                          |
|         | $x^{2} + \left(\frac{3}{4}x + c\right)^{2} - 112x + 66\left(\frac{3}{4}x + c\right) = 0$ .                                                                                                                                                                                                                                           | 1M             |                                                                                                                                                                          |
|         | $25x^2 + (24c - 1000)x + 16c^2 + 1056c = 0$                                                                                                                                                                                                                                                                                          |                |                                                                                                                                                                          |
|         | Since $L_1$ and $L_2$ are tangents to $C$ , we have                                                                                                                                                                                                                                                                                  |                |                                                                                                                                                                          |
|         | $(24c - 1000)^2 - 4(25)(16c^2 + 1056c) = 0.$                                                                                                                                                                                                                                                                                         | 1M             |                                                                                                                                                                          |
|         | $16c^{2} + 2400c - 15625 = 0$ $(4c - 25)(4c + 625) = 0$                                                                                                                                                                                                                                                                              |                |                                                                                                                                                                          |
|         |                                                                                                                                                                                                                                                                                                                                      |                |                                                                                                                                                                          |
|         | $c = \frac{25}{4}  \text{or}  c = \frac{-625}{4}$ Therefore the equation of $I$ and $I$                                                                                                                                                                                                                                              |                |                                                                                                                                                                          |
|         | Therefore, the equations of $L_1$ and $L_2$ are                                                                                                                                                                                                                                                                                      |                |                                                                                                                                                                          |
|         | $y = \frac{3}{4}x + \frac{25}{4}$ and $y = \frac{3}{4}x - \frac{625}{4}$ respectively.                                                                                                                                                                                                                                               | 1M             | for either one                                                                                                                                                           |
|         | Note that the coordinates of $S$ , $T$ , $U$ and $V$ are $\left(\frac{-25}{3}, 0\right)$ ,                                                                                                                                                                                                                                           |                | 2                                                                                                                                                                        |
|         | $\left(0, \frac{25}{4}\right)$ , $\left(\frac{625}{3}, 0\right)$ and $\left(0, \frac{-625}{4}\right)$ respectively.                                                                                                                                                                                                                  |                |                                                                                                                                                                          |
|         | The area of the trapezium <i>STUV</i> $= \frac{1}{2} \left( \left( \frac{625}{3} \right) \left( \frac{625}{4} \right) + \left( \frac{625}{4} \right) \left( \frac{25}{3} \right) + \left( \frac{25}{3} \right) \left( \frac{25}{4} \right) + \left( \frac{25}{4} \right) \left( \frac{625}{3} \right) \right)$ $= \frac{105 625}{6}$ | 1M             | $\frac{2(65)}{2} \left( \sqrt{\left(\frac{625}{3}\right)^2 + \left(\frac{-625}{4}\right)^2} + \sqrt{\left(\frac{-25}{3}\right)^2 + \left(\frac{25}{4}\right)^2} \right)$ |
|         | 6<br>≈ 17 604.16667                                                                                                                                                                                                                                                                                                                  |                |                                                                                                                                                                          |
|         | > 17 000 Thus, the claim is correct.                                                                                                                                                                                                                                                                                                 | 1A             | f.t.                                                                                                                                                                     |
|         |                                                                                                                                                                                                                                                                                                                                      | (9)            |                                                                                                                                                                          |
|         |                                                                                                                                                                                                                                                                                                                                      |                |                                                                                                                                                                          |
|         | A. A                                                                                                                                                                                                                                                                                             |                |                                                                                                                                                                          |
|         |                                                                                                                                                                                                                                                                                                                                      |                |                                                                                                                                                                          |
|         |                                                                                                                                                                                                                                                                                                                                      |                |                                                                                                                                                                          |

Paper 2

| Question No. | Key    | Question No. | Key    |
|--------------|--------|--------------|--------|
| 1.           | A (47) | 26.          | B (37) |
| 2.           | A (81) | 27.          | C (56) |
| 3.           | D (65) | 28.          | C (58) |
| 4.           | C (87) | 29.          | B (69) |
| 5.           | A (80) | 30.          | B (76) |
| 6.           | B (76) | 31.          | C (61) |
| 7.           | A (62) | 32.          | D (40) |
| 8.           | C (82) | 33.          | A (43) |
| 9.           | D (46) | 34.          | B (38) |
| 10.          | C (69) | 35.          | D (47) |
| 11.          | D (81) | 36.          | B (35) |
| 12.          | D (67) | 37.          | A (46) |
| 13.          | A (81) | 38.          | B (49) |
| 14.          | C (92) | 39.          | A (35) |
| 15.          | B (45) | 40.          | D (38) |
| 16.          | D (80) | 41.          | C (45) |
| 17.          | A (55) | 42.          | A (55) |
| 18.          | C (79) | 43.          | D (51) |
| 19.          | A (59) | 44.          | B (52) |
| 20.          | C (51) | 45.          | C (50) |
| 21.          | B (57) |              |        |
| 22.          | D (54) |              |        |
| 23.          | A (82) |              |        |
| 24.          | B (64) |              |        |
| 25.          | D (35) |              |        |

Note: Figures in brackets indicate the percentages of candidates choosing the correct answers.