| Paper I | Solution | Marks | Remarks | |---|----------|-----------|--| | 1. $\frac{(x^8y^7)^2}{x^5y^{-6}}$ | .% | | | | $=\frac{x^{16}y^{14}}{x^5y^{-6}}$ | | 1M | for $(ab)^m = a^m b^m$ or $(a^m)^n = a^{mn}$ | | $=x^{16-5}y^{14-(-6)}$ | | 1 | for $\frac{c^p}{c^q} = c^{p-q}$ or $\frac{c^p}{c^q} = \frac{1}{c^{q-p}}$ | | $=x^{11}y^{20}$ | | 1A
(3) | | | 0 4 - (4 - 1 P) G | | | | | 2. $Ax = (4x + B)C$ $Ax = 4Cx + BC$ | | l 1M | | | Ax - 4Cx = BC $(A - 4C)x = BC$ | | 1M | for putting x on one side | | $x = \frac{BC}{A - 4C}$ | | 1A | or equivalent | | Ax = (4x + B)C $Ax = 4x + B$ | ε | 1M | | | $\frac{A}{C}x = 4x + B$ $\frac{A}{C}x - 4x = B$ | | 1M | for putting x on one side | | $\left(\frac{A}{C} - 4\right)x = B$ | | | | | $\left(\frac{A-4C}{C}\right)x = B$ | | | | | $x = \frac{BC}{A - 4C}$ | | 1A | or equivalent | | | | (3) | | | 3. $\frac{2}{4x-5} + \frac{3}{1-6x}$ | | | | | $= \frac{4x-5}{2(1-6x)+3(4x-5)}$ $= \frac{2(1-6x)+3(4x-5)}{(4x-5)(1-6x)}$ | | 1M | | | $=\frac{2-12x+12x-15}{(4x-5)(1-6x)}$ | | 1M | 9 | | $=\frac{-13}{(4x-5)(1-6x)}$ $=\frac{13}{13}$ | | 1A | or equivalent | | $={(4x-5)(6x-1)}$ | | (3) | | | × | | | | | 2 | | | ж. | | | 44 | | | | | Solution | Marks | Remarks | |--|---|-----------------|---| | . (a) | 5m - 10n $= 5(m - 2n)$ | 1A | | | (b) | $m^2 + mn - 6n^2$ $= (m+3n)(m-2n)$ | 1A | | | (c) | $m^{2} + mn - 6n^{2} - 5m + 10n$ $= m^{2} + mn - 6n^{2} - (5m - 10n)$ $= (m + 3n)(m - 2n) - 5(m - 2n)$ $= (m - 2n)(m + 3n - 5)$ | 1M
1A
(4) | for using the results of (a) and (b) or equivalent | | | | | | | $\begin{cases} x \\ x \end{cases}$ So, | x and y be the number of male members and the number of female obsers respectively.
y = 180
y = (1+40%)y
y = 180
y = (1+40%)y
we have $y = 1.4y + y = 180$.
y = 1.4y + y = 180. | }1A+1A
1M | for getting a linear equation in x or y only | | Thu | s, the difference of the number of male members and the number of female nbers is 30. | 1A | | | x = Solv
Not
Thu | x be the number of male members. $(1+40%)(180-x)$ ving, we have $x=105$. e that $105-(180-105)=30$. s, the difference of the number of male members and the number of female mbers is 30. | 1A+1A+1M | $\begin{cases} 1A & \text{for } x = (1+40\%)y \\ +1A & \text{for } y = 180-x \\ +1M & \text{for a linear equation in one unknow} \end{cases}$ | | | the difference of the number of male members and the number of female members $(180)(40\%)$ $00\% + (100\% + 40\%)$ | 1A+1A+1M | 1A for numerator + 1A for denominator + 1M for fraction | | $\frac{180}{d} = \frac{1}{1}$ | d be the difference of the number of male members and number of female members. $\frac{0+d}{2} = \left(\frac{180-d}{2}\right)(1+40\%)$ is, the difference of the number of male members and the number of female mbers is 30. | 1A+1A+1M
1A | $\begin{cases} 1A \text{ for } \frac{180+d}{2} \text{ or } \frac{180-d}{2} \\ +1A \text{ for } \left(\frac{180-d}{2}\right)(1+40\%) \\ +1M \text{ for a linear equation in one unknow} \end{cases}$ | | 1 | | (4) | | | | | | at a | | | 45 | | | | | | Solution | Marks | Remarks | |----|-----|--|-----------------|--| | 6. | (a) | x+6 < 6(x+11) $x+6 < 6x+66$ $x-6x < 66-6$ $-5x < 60$ $x > -12$ | 1M
1A | for putting x on one side | | | | Therefore, we have $x > -12$ or $x \le -5$.
Thus, the solutions of (*) are all real numbers. | 1A | | | | (b) | -1 | 1A
(4) | | | | | | | | | 7. | (a) | $\angle AOB$ $= 135^{\circ} - 75^{\circ}$ $= 60^{\circ}$ | 1A | | | | (b) | Since $AO = BO$, we have $\angle OAB = \angle OBA$.
Note that $\angle OAB + \angle OBA + 60^\circ = 180^\circ$.
Therefore, we have $\angle OAB = \angle OBA = 60^\circ$.
So, $\triangle AOB$ is an equilateral triangle.
The perimeter of $\triangle AOB$
= 3(12) | 1M | can be absorbed | | | (c) | = 36
3 | 1A
1A | | | | | | (4) | el e | | 8. | (a) | Let $f(x) = hx + kx^2$, where h and k are non-zero constants.
So, we have $3h + 9k = 48$ and $9h + 81k = 198$.
Solving, we have $h = 13$ and $k = 1$.
Thus, we have $f(x) = 13x + x^2$. | 1A
1M
1A | for either substitution | | | (b) | $f(x) = 90$ $13x + x^{2} = 90$ $x^{2} + 13x - 90 = 0$ $(x - 5)(x + 18) = 0$ $x = 5 \text{ or } x = -18$ | 1M
1A
(5) | | | | | 46 | | | | | Solution | Marks | Remarks | |-----|-----------------------------|-------|------------------------------------| | (a) | x | | 7 | | . , | = 2 + 4 | Ves V | | | | = 6 | 1A | | | | <i>y</i> | | | | | = 37 – 15 | | | | | = 22 | 1A | | | | - | | | | | z = 37 + 3 | | | | | = 40 | 1A | | | | × | -5 | | | (b) | The required probability | | | | | $=\frac{22-6}{40}$ | 1M | for $\frac{y-x}{z}$ | | | 40 | | Z | | | $=\frac{2}{5}$ | 1A | 0.4 | | | 3 | | | | | Note that $b=7$ and $c=9$. | | | | | The required probability | | 8 | | | $=\frac{7+9}{100}$ | 1M | for $\frac{b+c}{z}$ | | | 40 | | Z | | | $=\frac{2}{5}$ | 1A | 0.4 | | | | | | | | Note that $a = 2$. | | | | | The required probability | | 51 | | | $=\frac{40-2-4-15-3}{}$ | 1M | for $\frac{z - a - 4 - 15 - 3}{z}$ | | | 40 | | Z | | | $=\frac{2}{5}$ | 1A | 0.4 | | | 3 | (5) | 8 7 | Solution | Marks | Remarks | |--------|--|-----------|--| | 0. (a) | Let (x, y) be the coordinates of P .
$\sqrt{(x-5)^2 + (y-7)^2} = \sqrt{(x-13)^2 + (y-1)^2}$
4x-3y-24=0
Thus, the equation of Γ is $4x-3y-24=0$. | 1M
1A | or equivalent | | | The slope of AB $= \frac{7-1}{5-13}$ $= \frac{-3}{4}$ The slope of Γ $= \frac{4}{3}$ The mid-point of AB $= \left(\frac{5+13}{2}, \frac{7+1}{2}\right)$ $= (9,4)$ Therefore, the equation of Γ is $y-4=\frac{4}{3}(x-9)$. | 1M | | | | Thus, the equation of Γ is $4x-3y-24=0$. | 1A
(2) | or equivalent | | (b) | Putting $y=0$ in $4x-3y-24=0$, we have $x=6$.
So, the coordinates of H are $(6,0)$.
Putting $x=0$ in $4x-3y-24=0$, we have $y=-8$.
Therefore, the coordinates of K are $(0,-8)$. | 1M | either one | | | The diameter of C
= HK
= $\sqrt{(6-0)^2 + (0-(-8))^2}$
= 10
The circumference of C
= 10π | 1M | , and a second s | | | ≈ 31.41592654
> 30 | | | | | Thus, the claim is correct. | 1A
(3) | f.t. | | | | | 5 | | | | × | | | | | | | | | | | 8 , | | | 48 | | | | | Solution | Marks | Remarks | |-------|---|-----------|---------------------------------------| | . (a) | Let $V \text{ cm}^3$ be the final volume of milk in the vessel. | | | | | $\frac{V - 444\pi}{V} = \left(\frac{12}{16}\right)^3$ | 1M+1A | 1M for $\left(\frac{12}{16}\right)^3$ | | | $\frac{V}{V} - \left(\frac{16}{16}\right)$ $V = 768 \pi$ | 1A | (16) | | | Thus, the final volume of milk in the vessel is $768\pi \text{ cm}^3$. | IA | # | | | | | | | | Let $V \text{ cm}^3$ and $r \text{ cm}$ be the final volume of milk and the final radius of the surface of milk in the vessel respectively. | | | | | $V = \frac{1}{3}\pi r^2 (16)$ | | | | | $V - 444\pi = \frac{1}{3}\pi \left(\frac{12r}{16}\right)^2 (12)$ | | ž | | | So, we have $V - 444\pi = \frac{1}{3}\pi \left(\frac{12}{16}\right)^2 \left(\frac{3V}{16\pi}\right)$ (12). | 1M+1A | 1M for eliminating r^2 | | | Solving, we have $V = 768\pi$. | 1A | 9 | | | Thus, the final volume of milk in the vessel is 768π cm ³ . | | 1 | | | | (3) | 3 | | (b) | Let r cm be the final radius of the surface of milk in the vessel. | | | | | $\frac{1}{3}\pi r^2(16) = 768\pi$ | 1M | | | | r = 12 | | | | | The final area of the wet curved surface of the vessel | | | | | $= \pi (12)\sqrt{12^2 + 16^2}$ $= 240\pi$ | 1M | | | | $\approx 753.9822369 \text{ cm}^2$ | | | | | < 800 cm ² | 1.4 | C. | | | Thus, the claim is disagreed. | 1A
(3) | f.t. | , | e e | 49 | | | | gamenta. | | | Solution | Marks | Remarks | |----------|-----|-------------|---|--------------|------------------------------| | 2. | (a) | a =
Note | a = 11 + b + 4
b + 4
c + b + 11 and $4 < b < 10$. | 1M | * ± | | | | Thus | s, we have $\begin{cases} a = 12 \\ b = 8 \end{cases}$ or $\begin{cases} a = 13 \\ b = 9 \end{cases}$. | 1A+1A
(3) | 1A for one pair + 1A for all | | | (b) | (i) | The median is the greatest when the ages of these four children are 7, 8, 9 and 10. The greatest possible median of the ages of the children in the group = 8 | 1M
1A | | | | | (ii) | The mean is the least when the ages of these four children are 6 , 7 , 8 and 9 . By (a), there are two cases. | 1M | | | | | | Case 1: $a = 12$ and $b = 8$
The mean of the ages of the children in the group $= \frac{12(6) + 13(7) + 12(8) + 9(9) + 4(10)}{12 + 13 + 12 + 9 + 4}$ $= 7.6$ | , | er
e | | | | | Case 2: $a = 13$ and $b = 9$
The mean of the ages of the children in the group $= \frac{12(6) + 14(7) + 12(8) + 10(9) + 4(10)}{12 + 14 + 12 + 10 + 4}$ ≈ 7.615384615 | | | | | | | Thus, the least possible mean of the ages of the children in the group is 7.6 . | 1A
(4) | f.t. | | | | | o e e | | g . | | | | | a
a | o . | | | | | | | | 2 | | | | | | | | | | Soluti | on | Marks | Remarks | |-----|---|--|-------|---------| | (a) | In $\triangle ACD$ and $\triangle ABE$, | | | | | (a) | $\angle ADC = \angle AEB$ | (given) | | | | | AD = AE | (sides opp. equal ∠s) | | | | | CE = BD | (given) | | | | | CE - BD
CE + DE = BD + DE | (givon) | | | | | CD = BE | | | | | | $\triangle ACD \cong \triangle ABE$ | (SAS) | | | | | | | | | | | Marking Scheme: Case 1 Any correct proof with | th correct reasons | 2 | | | | Case 2 Any correct proof w | thout reasons | | | | | Case 2 7 my correct proof w | tilout rousons. | (2) | | | | | | | | | (b) | | m and $\angle AMD = \angle AME = 90^{\circ}$. | | | | | AM | | | | | | $=\sqrt{AD^2-DM^2}$ | | 1M | | | | $=\sqrt{15^2-9^2}$ | | | | | | $=\sqrt{144}$ | | | | | | $= \sqrt{144}$
= 12 cm | | 1A | | | | - 12 VIII | | | | | | (ii) AB^2 | | | | | | $=AM^2 + BM^2$ | | | | | | $= 144 + (7+9)^2$ | | | | | | = 400 | | | | | | By (a), we have $AE = AD$ | =15cm | 1M | | | | $AB^2 + AE^2$ | | | œ | | | $AB + AE$ $= 400 + 15^{2}$ | | | | | | = 400 + 13
= 625 | | | F | | | $=(7+18)^2$ | | | | | | | | | | | | $= (BD + DE)^2$ | | | | | | $=BE^2$ | | 1M | C. | | | Thus, $\triangle ABE$ is a right-an | gled triangle. | 1A | f.t. | | | | | (5) | | | | | | | | | | | | | | | | | · | | | | | | | 17 | | | | | | | | | | ê | Solution | Marks | Remarks | |---------|---|--------------|--------------------------| | 14. (a) | Note that $p(2) = 152 + 4a + 2b + c$ and $p(-2) = 40 + 4a - 2b + c$.
Since $p(2) = p(-2)$, we have $b = -28$. | 1M | | | | By comparing the coefficients of x^4 , we have $l=3$.
Note that the coefficients of x^3 and x in the expansion of | 1A | | | | (3 x^2 +5 x +8)(2 x^2 + mx + n) are 3 m +10 and 8 m +5 n respectively. | | | | | So, we have $3m+10 = 7$ and $8m+5n = -28$. | 1M | | | | Solving, we have $m = -1$ and $n = -4$. | 1A+1A
(5) | _ | | (b) | p(x) = 0 | 20 180 | | | | $(3x^2 + 5x + 8)(2x^2 - x - 4) = 0$ (by (a)) | | | | | $3x^2 + 5x + 8 = 0$ or $2x^2 - x - 4 = 0$ | | | | | $5^2 - 4(3)(8)$ | 1M . | | | | = -71
< 0 | 1A | | | | So, the quadratic equation $3x^2 + 5x + 8 = 0$ does not have real roots. | 1M+1A | either one
either one | | | $(-1)^2 - 4(2)(-4)$ | | | | | = 33 | | either on | | | > 0
Therefore, the quadratic equation $2x^2 - x - 4 = 0$ has 2 real roots. | | | | | Therefore, the quadratic equation $2x - x - 4 = 0$ has 2 feat foots. | | | | | Hence, the equation $(3x^2 + 5x + 8)(2x^2 - x - 4) = 0$ has 2 real roots. | | | | | Thus, the equation $p(x) = 0$ has 2 real roots. | 1A | f.t. | | | | (5) | | | | | - | | | | ∞ . | 9 | | | 52 | | | | - | Solution | Marks | Remarks | |----|--|-----------|-----------------------------------| | 5. | The required probability | | | | | $=\frac{C_4^6 4! 5!}{1}$ | 13.6.13.6 | | | | $=\frac{1}{(4+5)!}$ | 1M+1M | 1M for denominator + 1M for 4! | | | | | | | | $=\frac{43\ 200}{362\ 880}$ | | | | | | | VIII | | | $=\frac{5}{42}$ | 1A | r.t. 0.119 | | | | | | | | The required probability | | | | | $= \frac{4!5! + 4!5!(4)(2) + 4!5!(3) + 4!5!(3)}{(4+5)!}$ | 1M+1M | 1M for denominator + 1M for 4! | | | | | | | | $=\frac{43\ 200}{}$ | | | | | 362 880 | | | | | $=\frac{5}{42}$ | 1A | r.t. 0.119 | | | 42 | IA. | 1.t. 0.119 | | | | | | | | The required probability | | | | | $= \left(\frac{4}{4}\right)\left(\frac{3}{3}\right)\left(\frac{2}{2}\right)\left(\frac{1}{1}\right)\left(\frac{5}{9}\right)\left(\frac{4}{8}\right)\left(\frac{3}{7}\right)\left(\frac{2}{6}\right)\left(\frac{1}{5}\right)(1+(4)(2)+3+3)$ | 1M+1M | 1M for denominator | | | | İ | + 1M for (4)(3)(2)(1)(5)(4)(3)(2) | | | $=\frac{43200}{262000}$ | | | | | 362 880 | | 3 | | | $=\frac{5}{42}$ | 1A | r.t. 0.119 | | | 42 | | | | | | (3) | _ | | | | | | | | | | | | | 8 | | | | 6 | Let σ marks be the standard deviation of the distribution. | <u> </u> | | | 0. | | | | | | $\frac{22-61}{\sigma} = -2.6$ | 1M | | | | $\sigma = 15$ | | | | | | | either one | | | The score of Mary | | | | | $=61+1.4\sigma$ | | | | | =61+1.4(15) | | | | | = 82 marks | 1A | | | | | | ** | | | The difference of the score of Mary and the score of Albert | | | | | = 82 - 22
= 60 months | | <i>□</i> | | | = 60 marks | | | | | > 59 marks | | ± 1 | | | Note that the year of the distribution is at least 41, 1999. | | | | | Note that the range of the distribution is at least the difference of the score of Mary and the score of Albert. | | | | | Therefore, the range of the distribution exceeds 59 marks. | | | | | Thus, the claim is incorrect. | 1A | f.t. | | | | (3) | timuses fel. | 53 | 1 | | | - | Solution | | Marks | Remarks | |-------|--|-----|-----------|---------------------------------------| | . (a) | Let d be the common difference of the sequence.
555 = 666 + (38 - 1)d | | 1M | | | | d = -3 | | 1A | | | | The common difference of the sequence | | - | | | | $=\frac{555-666}{38-1}$ | | 1M | | | | 38-1 | | 1A | | | | | | (2) | | | (b) | $\frac{n}{2}(2(666) + (n-1)(-3)) > 0$ | | 1M+1A | | | | $1335n - 3n^2 > 0$ | | | | | | n(n-445) < 0 | | | | | | 0 < n < 445 | | | | | | Thus, the greatest value of n is 444. | | 1A
(3) | | | | | | (3) | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | . (a) | f(x) | | | | | | $=\frac{-1}{3}x^2 + 12x - 121$ | | | | | | | | | | | | $=\frac{-1}{3}(x^2-36x)-121$ | | | | | | $= \frac{-1}{3}(x^2 - 36x + 18^2 - 18^2) - 121$ | - 1 | 1M | | | | $=\frac{-1}{3}(x-18)^2-13$ | | | | | | | | | | | | Thus, the coordinates of the vertex are $(18, -13)$. | | 1A | | | | | | (2) | | | (b) | g(x) | | 13.5 | ø | | | =f(x)+13 | | 1M | -T - | | | $=\frac{-1}{3}(x-18)^2$ | - | 1A | accept $\frac{-1}{3}x^2 + 12x - 108$ | | | | | (2) | | | (c) | Note that $\frac{-1}{3}x^2 - 12x - 121 = f(-x)$. | | | | | | Thus, the transformation is the reflection with respect to the <i>y</i> -axis. | | 1A+1A | 1A for reflection + 1A for all corre | | | Thus, the transformation is the reflection with respect to the y axis. | | 1711171 | TITIO TOROCTOR + TITIO OR CORE | | | Note that $\frac{-1}{3}x^2 - 12x - 121 = f(x+36)$. | | | 5 0 | | | Thus, the transformation is the leftward translation of 36 units. | | 1A+1A | 1A for translation + 1A for all corre | | | | | (2) | | | | | | | | | | | | | × | | | | | | - | | | Solution | Marks | Remarks | |-----|---|-------|--------------| | (a) | By sine formula, $ \frac{AB}{\sin \angle ADB} = \frac{BD}{\sin \angle BAD} $ $ \frac{10}{\sin \angle ADB} = \frac{15}{\sin 86^{\circ}} $ $ \angle ADB \approx 41.68560132^{\circ} \text{ or } \angle ADB \approx 138.3143987^{\circ} \text{ (rejected)} $ | 1M | - | | | $\angle ABD = 180^{\circ} - \angle BAD - \angle ADB$
$\angle ABD \approx 52.31439868^{\circ}$
$\angle ABD \approx 52.3^{\circ}$ | 1A | r.t. 52.3° | | | By cosine formula,
$CD^2 = BC^2 + BD^2 - 2(BC)(BD)\cos \angle CBD$ | 1M | | | | $CD^2 \approx 8^2 + 15^2 - 2(8)(15)\cos 43^\circ$
$CD \approx 10.65246974$
$CD \approx 10.7 \text{ cm}$ | 1A | r.t. 10.7 cm | | | | (4) | | | (b) | Since $AC^2 + BC^2 = AB^2$, we have $\angle ACB = 90^\circ$. | | | | | By cosine formula, | | | | | $AD^{2} = AB^{2} + BD^{2} - 2(AB)(BD)\cos \angle ABD$
$AD^{2} \approx 10^{2} + 15^{2} - 2(10)(15)\cos 52.31439868^{\circ}$ | | | | | $AD \approx 10^{-4.15} - 2(10)(15)\cos 32.31439868^{\circ}$
$AD \approx 11.89964475$ | | 1 | | | By cosine formula,
$AD^{2} = AC^{2} + CD^{2} - 2(AC)(CD)\cos \angle ACD$ | | | | | $\cos \angle ACD \approx \frac{6^2 + (10.65246974)^2 - (11.89964475)^2}{2(6)(10.65246794)}$ | | × | | | $\angle ACD \approx 86.46867599^{\circ}$
So, $\angle ACD$ is not a right angle. | 1M | | | | Hence, the angle between AB and the face BCD is not $\angle ABC$. | 1111 | • | | | Thus, the claim is disagreed. | 1A | f.t. | | | Since $AC^2 + BC^2 = AB^2$, we have $\angle ACB = 90^\circ$. | | | | | By cosine formula,
$AD^{2} = AB^{2} + BD^{2} - 2(AB)(BD) \cos \angle ABD$ | | = | | | $AD^2 \approx 10^2 + 15^2 - 2(10)(15)\cos 52.31439868^\circ$
$AD^2 \approx 141.6015451$ | | | | | $AC^2 + CD^2 \approx 6^2 + (10.65246974)^2$ | | | | | $AC^2 + CD^2 \approx 149.4751116$ | | | | | Hence, we have $AD^2 \neq AC^2 + CD^2$.
So, $\angle ACD$ is not a right angle. | 1M | | | | Hence, the angle between AB and the face BCD is not $\angle ABC$. Thus, the claim is disagreed. | 1.4 | f.t. | | | Thus, the claim is disagreed. | 1A | 1.1. | | | tion | Marks | Remarks | |--|---|--------------------|---------| | Note that J is the centre of the | circle OPQ . | | | | $\angle IPO = \angle IPQ$ | (in-centre of Δ) | | | | Also note that P , I and J are | | | | | $\angle JPO = \angle JPQ$ | | | | | JO = JP | (radii) | | | | $\angle JOP = \angle JPO$ | (base ∠s, isos. ∆) | | | | JP = JQ | (radii) | | | | $\angle JPQ = \angle JQP$ | (base \angle s, isos. \triangle) | | | | $\angle JOP = \angle JQP$ | · · · · · · · · · · · · · · · · · · · | | | | JP = JP | (common side) | | | | $\Delta JOP \cong \Delta JQP$ | (AAS) | | | | Thus, we have $OP = PQ$. | (corr. sides, ≅∆s) | | | | Note that J is the centre of the | circle OPQ. | | | | $\angle IPO = \angle IPQ$ | (in-centre of ∆) | | 52 | | Also note that P , I and J are | collinear. | | | | $\angle JPO = \angle JPQ$ | × | | | | JP = JQ | (radii) | | | | $\angle JQP = \angle JPQ$ | (base \angle s, isos. Δ) | | | | = ∠JPO | 8 | | | | $2\angle POQ = \angle PJQ$ | (\angle at centre twice \angle at circumference) | | | | $= 180^{\circ} - \angle JPQ - \angle JQ$ | $P \ (\angle \text{sum of } \Delta)$ | | | | $=180^{\circ}-\angle JPQ-\angle JP$ | 0 | | | | $= \angle POQ + \angle OQP$ | $(\angle sum of \Delta)$ | | | | $\angle POQ = \angle OQP$ | | | | | Thus, we have $OP = PQ$. | (sides opp. equal ∠s) | | | | | | | | | | circle OPO | | | | Note that J is the centre of the | | | | | $\angle IPO = \angle IPQ$ | (in-centre of Δ) | | | | $\angle IPO = \angle IPQ$
Also note that P , I and J are | (in-centre of Δ) | | | | $\angle IPO = \angle IPQ$
Also note that P , I and J are $\angle JPO = \angle JPQ$ | (in-centre of Δ) collinear. | | ÷ | | $\angle IPO = \angle IPQ$
Also note that P , I and J are $\angle JPO = \angle JPQ$
JO = JP | (in-centre of Δ) collinear. | | · | | $\angle IPO = \angle IPQ$
Also note that P , I and J are $\angle JPO = \angle JPQ$
JO = JP
$\angle JOP = \angle JPO$ | (in-centre of Δ) collinear.
(radii)
(base \angle s, isos. Δ) | | ÷ | | $\angle IPO = \angle IPQ$
Also note that P , I and J are $\angle JPO = \angle JPQ$
JO = JP
$\angle JOP = \angle JPO$
JP = JQ | (in-centre of Δ) collinear. (radii) (base ∠s, isos. Δ) (radii) | | - | | $\angle IPO = \angle IPQ$
Also note that P , I and J are $\angle JPO = \angle JPQ$
JO = JP
$\angle JOP = \angle JPO$
JP = JQ
$\angle JPQ = \angle JQP$ | (in-centre of Δ) collinear.
(radii)
(base \angle s, isos. Δ) | | | | $\angle IPO = \angle IPQ$
Also note that P , I and J are $\angle JPO = \angle JPQ$
JO = JP
$\angle JOP = \angle JPO$
JP = JQ
$\angle JPQ = \angle JQP$
$\angle JOP = \angle JQP$ | (in-centre of Δ) collinear. (radii) (base \angle s, isos. Δ) (radii) (base \angle s, isos. Δ) | | - | | $\angle IPO = \angle IPQ$
Also note that P , I and J are $\angle JPO = \angle JPQ$
JO = JP
$\angle JOP = \angle JPO$
JP = JQ
$\angle JPQ = \angle JQP$
$\angle JOP = \angle JQP$
JO = JQ | (in-centre of Δ) collinear. (radii) (base \angle s, isos. Δ) (radii) (base \angle s, isos. Δ) (radii) | | | | $\angle IPO = \angle IPQ$ Also note that P , I and J are $\angle JPO = \angle JPQ$ $JO = JP$ $\angle JOP = \angle JPO$ $JP = JQ$ $\angle JPQ = \angle JQP$ $\angle JOP = \angle JQP$ $\angle JOP = \angle JQP$ $\angle JOQ = \angle JQO$ | (in-centre of Δ) collinear. (radii) (base \angle s, isos. Δ) (radii) (base \angle s, isos. Δ) (radii) (radii) (base \angle s, isos. Δ) | | - | | $\angle IPO = \angle IPQ$ Also note that P , I and J are $\angle JPO = \angle JPQ$ $JO = JP$ $\angle JOP = \angle JPO$ $JP = JQ$ $\angle JPQ = \angle JQP$ $\angle JOP = \angle JQP$ $\angle JOP = \angle JQO$ $\angle JOQ = \angle JQO$ $\angle JOP - \angle JOQ = \angle JQP - \angle JQO$ | (in-centre of Δ) collinear. (radii) (base \angle s, isos. Δ) (radii) (base \angle s, isos. Δ) (radii) (radii) (base \angle s, isos. Δ) | | | | $\angle IPO = \angle IPQ$ Also note that P , I and J are $\angle JPO = \angle JPQ$ $JO = JP$ $\angle JOP = \angle JPO$ $JP = JQ$ $\angle JPQ = \angle JQP$ $\angle JOP = \angle JQP$ $\angle JOP = \angle JQP$ $\angle JOQ = \angle JQO$ $\angle JOP - \angle JOQ = \angle JQP - \angle JQ$ $\angle POQ = \angle OQP$ | (in-centre of Δ) collinear. (radii) (base \angle s, isos. Δ) (radii) (base \angle s, isos. Δ) (radii) (radii) (base \angle s, isos. Δ) | | - | | $\angle IPO = \angle IPQ$ Also note that P , I and J are $\angle JPO = \angle JPQ$ $JO = JP$ $\angle JOP = \angle JPO$ $JP = JQ$ $\angle JPQ = \angle JQP$ $\angle JOP = \angle JQP$ $\angle JOP = \angle JQO$ $\angle JOQ = \angle JQO$ $\angle JOP - \angle JOQ = \angle JQP - \angle JQO$ | (in-centre of Δ) collinear. (radii) (base \angle s, isos. Δ) (radii) (base \angle s, isos. Δ) (radii) (radii) (base \angle s, isos. Δ) | | | | $\angle IPO = \angle IPQ$ Also note that P , I and J are $\angle JPO = \angle JPQ$ $JO = JP$ $\angle JOP = \angle JPO$ $JP = JQ$ $\angle JPQ = \angle JQP$ $\angle JOP = \angle JQP$ $\angle JOP = \angle JQP$ $\angle JOQ = \angle JQO$ $\angle JOP - \angle JOQ = \angle JQP - \angle JQ$ $\angle POQ = \angle OQP$ Thus, we have $OP = PQ$. | (in-centre of Δ) collinear. (radii) (base \angle s, isos. Δ) (radii) (base \angle s, isos. Δ) (radii) (radii) (base \angle s, isos. Δ) | | | | $\angle IPO = \angle IPQ$ Also note that P , I and J are $\angle JPO = \angle JPQ$ $JO = JP$ $\angle JOP = \angle JPO$ $JP = JQ$ $\angle JPQ = \angle JQP$ $\angle JOP = \angle JQP$ $\angle JOP = \angle JQP$ $\angle JOQ = \angle JQO$ $\angle JOP - \angle JOQ = \angle JQP - \angle JQ$ $\angle POQ = \angle OQP$ | (in-centre of Δ) collinear. (radii) (base \angle s, isos. Δ) (sides opp. equal \angle s) | 3 | | | $\angle IPO = \angle IPQ$ Also note that P , I and J are $\angle JPO = \angle JPQ$ $JO = JP$ $\angle JOP = \angle JPO$ $JP = JQ$ $\angle JPQ = \angle JQP$ $\angle JOP = \angle JQP$ $JO = JQ$ $\angle JOQ = \angle JQO$ $\angle JOP - \angle JOQ = \angle JQP - \angle JQ$ $\angle POQ = \angle OQP$ Thus, we have $OP = PQ$. Marking Scheme: Case 1 Any correct proof w Case 2 Any correct proof w | (in-centre of Δ) collinear. (radii) (base ∠s, isos. Δ) (oradii) (base ∠s, isos. Δ) (oradii) (base ∠s, isos. Δ) | 3 2 | | | $\angle IPO = \angle IPQ$ Also note that P , I and J are $\angle JPO = \angle JPQ$ $JO = JP$ $\angle JOP = \angle JPO$ $JP = JQ$ $\angle JPQ = \angle JQP$ $\angle JOP = \angle JQP$ $JO = JQ$ $\angle JOQ = \angle JQO$ $\angle JOP - \angle JOQ = \angle JQP - \angle JQ$ $\angle POQ = \angle OQP$ Thus, we have $OP = PQ$. Marking Scheme: Case 1 Any correct proof w Case 2 Any correct proof w | (in-centre of Δ) collinear. (radii) (base ∠s, isos. Δ) O (sides opp. equal ∠s) | 2
1 | | | $\angle IPO = \angle IPQ$ Also note that P , I and J are $\angle JPO = \angle JPQ$ $JO = JP$ $\angle JOP = \angle JPO$ $JP = JQ$ $\angle JPQ = \angle JQP$ $\angle JOP = \angle JQP$ $JO = JQ$ $\angle JOQ = \angle JQO$ $\angle JOP - \angle JOQ = \angle JQP - \angle JQ$ $\angle POQ = \angle OQP$ Thus, we have $OP = PQ$. Marking Scheme: Case 1 Any correct proof w Case 2 Any correct proof w | (in-centre of Δ) collinear. (radii) (base ∠s, isos. Δ) (oradii) (base ∠s, isos. Δ) (oradii) (base ∠s, isos. Δ) | 3
2
1
(3) | | | $\angle IPO = \angle IPQ$ Also note that P , I and J are $\angle JPO = \angle JPQ$ $JO = JP$ $\angle JOP = \angle JPO$ $JP = JQ$ $\angle JPQ = \angle JQP$ $\angle JOP = \angle JQP$ $JO = JQ$ $\angle JOQ = \angle JQO$ $\angle JOP - \angle JOQ = \angle JQP - \angle JQ$ $\angle POQ = \angle OQP$ Thus, we have $OP = PQ$. Marking Scheme: Case 1 Any correct proof w Case 2 Any correct proof w | (in-centre of Δ) collinear. (radii) (base ∠s, isos. Δ) (oradii) (base ∠s, isos. Δ) (oradii) (base ∠s, isos. Δ) | 2
1 | | | $\angle IPO = \angle IPQ$ Also note that P , I and J are $\angle JPO = \angle JPQ$ $JO = JP$ $\angle JOP = \angle JPO$ $JP = JQ$ $\angle JPQ = \angle JQP$ $\angle JOP = \angle JQP$ $JO = JQ$ $\angle JOQ = \angle JQO$ $\angle JOP - \angle JOQ = \angle JQP - \angle JQ$ $\angle POQ = \angle OQP$ Thus, we have $OP = PQ$. Marking Scheme: Case 1 Any correct proof w Case 2 Any correct proof w | (in-centre of Δ) collinear. (radii) (base ∠s, isos. Δ) (oradii) (base ∠s, isos. Δ) (oradii) (base ∠s, isos. Δ) | 2
1 | | | | Solution | Marks | Remarks | |---------|--|----------------|--| | (b) (i) | Let $(h, 19)$ be the coordinates of P .
By (a), we have $h^2 + 19^2 = (40 - h)^2 + (30 - 19)^2$.
Solving, we have $h = 17$. | 1M | | | | Let $x^2 + y^2 + Dx + Ey + F = 0$ be the equation of C .
Since C passes through the origin, we have $F = 0$.
So, we have $17D + 19E + 650 = 0$ and $40D + 30E + 2500 = 0$.
Solving, we have $D = -112$ and $E = 66$.
Thus, the equation of C is $x^2 + y^2 - 112x + 66y = 0$. | 1A
1M
1A | for either one $(x-56)^2 + (y+33)^2 = 65^2$ | | (ii) | Note that the equations of L_1 and L_2 are in the form | | | | | $y = \frac{3}{4}x + c$, where c is a constant. | | | | | Putting $y = \frac{3}{4}x + c$ in $x^2 + y^2 - 112x + 66y = 0$, we have | | | | | $x^{2} + \left(\frac{3}{4}x + c\right)^{2} - 112x + 66\left(\frac{3}{4}x + c\right) = 0$. | 1M | | | | $25x^2 + (24c - 1000)x + 16c^2 + 1056c = 0$ | | | | | Since L_1 and L_2 are tangents to C , we have | | | | | $(24c - 1000)^2 - 4(25)(16c^2 + 1056c) = 0.$ | 1M | | | | $16c^{2} + 2400c - 15625 = 0$ $(4c - 25)(4c + 625) = 0$ | | | | | | | | | | $c = \frac{25}{4} \text{or} c = \frac{-625}{4}$ Therefore the equation of I and I | | | | | Therefore, the equations of L_1 and L_2 are | | | | | $y = \frac{3}{4}x + \frac{25}{4}$ and $y = \frac{3}{4}x - \frac{625}{4}$ respectively. | 1M | for either one | | | Note that the coordinates of S , T , U and V are $\left(\frac{-25}{3}, 0\right)$, | | 2 | | | $\left(0, \frac{25}{4}\right)$, $\left(\frac{625}{3}, 0\right)$ and $\left(0, \frac{-625}{4}\right)$ respectively. | | | | | The area of the trapezium <i>STUV</i> $= \frac{1}{2} \left(\left(\frac{625}{3} \right) \left(\frac{625}{4} \right) + \left(\frac{625}{4} \right) \left(\frac{25}{3} \right) + \left(\frac{25}{3} \right) \left(\frac{25}{4} \right) + \left(\frac{25}{4} \right) \left(\frac{625}{3} \right) \right)$ $= \frac{105 625}{6}$ | 1M | $\frac{2(65)}{2} \left(\sqrt{\left(\frac{625}{3}\right)^2 + \left(\frac{-625}{4}\right)^2} + \sqrt{\left(\frac{-25}{3}\right)^2 + \left(\frac{25}{4}\right)^2} \right)$ | | | 6
≈ 17 604.16667 | | | | | > 17 000 Thus, the claim is correct. | 1A | f.t. | | | | (9) | | | | | | | | | A. A | | | | | | | | | | | | | Paper 2 | Question No. | Key | Question No. | Key | |--------------|--------|--------------|--------| | 1. | A (47) | 26. | B (37) | | 2. | A (81) | 27. | C (56) | | 3. | D (65) | 28. | C (58) | | 4. | C (87) | 29. | B (69) | | 5. | A (80) | 30. | B (76) | | 6. | B (76) | 31. | C (61) | | 7. | A (62) | 32. | D (40) | | 8. | C (82) | 33. | A (43) | | 9. | D (46) | 34. | B (38) | | 10. | C (69) | 35. | D (47) | | 11. | D (81) | 36. | B (35) | | 12. | D (67) | 37. | A (46) | | 13. | A (81) | 38. | B (49) | | 14. | C (92) | 39. | A (35) | | 15. | B (45) | 40. | D (38) | | 16. | D (80) | 41. | C (45) | | 17. | A (55) | 42. | A (55) | | 18. | C (79) | 43. | D (51) | | 19. | A (59) | 44. | B (52) | | 20. | C (51) | 45. | C (50) | | 21. | B (57) | | | | 22. | D (54) | | | | 23. | A (82) | | | | 24. | B (64) | | | | 25. | D (35) | | | Note: Figures in brackets indicate the percentages of candidates choosing the correct answers.