2018-DSE MATH CP PAPER 2

HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY
HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2018

MATHEMATICS Compulsory Part PAPER 2

11:30 am - 12:45 pm (11/4 hours)

INSTRUCTIONS

- 1. Read carefully the instructions on the Answer Sheet. After the announcement of the start of the examination, you should first stick a barcode label and insert the information required in the spaces provided. No extra time will be given for sticking on the barcode label after the 'Time is up' announcement.
- 2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS**. You are advised to use an HB pencil to mark all the answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

©香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2018 Not to be taken away before the end of the examination session

There are 30 questions in Section A and 15 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

Section A

1.
$$\frac{8^{2n+1}}{4^{3n+1}} =$$

- A. 1.
- B. 2.
- C. 2^n .
- D. 2^{-n} .

2. If
$$\frac{\alpha}{1-x} = \frac{\beta}{x}$$
, then $x =$

- A. $\frac{\alpha}{\alpha \beta}$.
- B. $\frac{\alpha}{\alpha + \beta}$.
- C. $\frac{\beta}{\alpha \beta}$.
- D. $\frac{\beta}{\alpha + \beta}$.

3.
$$h^2 - 6h - 4k^2 - 12k =$$

A.
$$(h-2k)(h-2k+6)$$
.

B.
$$(h-2k)(h+2k+6)$$
.

C.
$$(h+2k)(h-2k-6)$$
.

D.
$$(h+2k)(h+2k-6)$$
.

- 4. $\frac{1}{3x+7} \frac{1}{3x-7} =$
 - A. $\frac{14}{49-9x^2}$.
 - B. $\frac{14}{9x^2 49}$.
 - $C. \qquad \frac{6x}{49 9x^2} \ .$
 - $D. \qquad \frac{6x}{9x^2 49} \ .$
- 5. Which of the following statements about the graph of $y = 16 (x 6)^2$ is true?
 - A. The graph cuts the *x*-axis.
 - B. The graph opens upwards.
 - C. The y-intercept of the graph is 16.
 - D. The graph passes through the origin.
- 6. In the figure, the equations of the straight lines L_1 and L_2 are 3x + ay = b and cx + y = d respectively. Which of the following is/are true?
 - I. ac < 3
 - II. ad < b
 - III. bc < 3d
 - A. II only
 - B. III only
 - C. I and II only
 - D. I and III only

- 7. If $f(x) = 3x^2 2x + 1$, then f(2m-1) =
 - A. $6m^2 4m + 2$.
 - B. $6m^2 4m + 6$.
 - C. $12m^2 16m + 2$.
 - D. $12m^2 16m + 6$.
- 8. Let $g(x) = x^8 + ax^7 + b$, where a and b are constants. If g(x) is divisible by x-1, find the remainder when g(x) is divided by x+1.
 - A. 0
 - B. 2a
 - C. –2*a*
 - D. -2a + 2
- 9. A sum of \$100 000 is deposited at an interest rate of 2% per annum for 3 years, compounded monthly. Find the interest correct to the nearest dollar.
 - A. \$6 000
 - B. \$6121
 - C. \$6176
 - D. \$6178
- 10. Let a, b and c be non-zero numbers. If 3a = 4b and a: c = 2:5, then $\frac{a+3b}{b+3c} =$
 - A. $\frac{5}{3}$
 - B. $\frac{13}{33}$
 - C. $\frac{30}{53}$.
 - D. $\frac{75}{38}$

- 11. If w varies directly as the square root of u and inversely as the square of v, which of the following must be constant?
 - A. u^4vw^2
 - B. uv^4w^2
 - C. $\frac{vw^2}{u^4}$
 - D. $\frac{v^4w^2}{u}$
- 12. Let a_n be the *n*th term of a sequence. If $a_3 = 21$, $a_6 = 89$ and $a_{n+2} = a_n + a_{n+1}$ for any positive integer n, then $a_1 =$
 - A. 8.
 - B. 13.
 - C. 34.
 - D. 55.
- 13. The solution of $\frac{1-2x}{3} \ge x-3$ or 4x+9 < 1 is
 - A. x < -2.
 - B. x > -2.
 - C. $x \le 2$.
 - D. $x \ge 2$.
- 14. In the figure, ABCDEFGH is an octagon, where all the measurements are correct to the nearest cm. Let $x \text{ cm}^2$ be the actual area of the octagon. Find the range of values of x.
 - A. 13 < x < 23
 - B. 13 < x < 27
 - C. 17 < x < 23
 - D. 17 < x < 27

- 15. In the figure, the volume of the solid right triangular prism is
 - A. 544 cm^3 .
 - B. $600 \, \text{cm}^3$.
 - C. $660 \, \text{cm}^3$.
 - D. 720 cm^3 .

- 16. In the figure, ABCD is a parallelogram. E is a point lying on BC such that BE:EC=5:3. AE and BD intersect at the point F. If the area of ΔABF is 120 cm^2 , then the area of the quadrilateral CDFE is
 - A. 237 cm^2 .
 - B. 307 cm^2 .
 - C. 312 cm^2 .
 - D. 429 cm^2 .

- 17. In the figure, O is the centre of the sector OABCD. AD and OC are perpendicular to each other and intersect at the point E. F is a point lying on AD such that BF is perpendicular to AD. If AF = 9 cm, DF = 39 cm and OE = 18 cm, then the area of the sector OBC is
 - A. $48\pi \text{ cm}^2$.
 - B. $75\pi \text{ cm}^2$.
 - C. $96\pi \text{ cm}^2$.
 - D. $150\pi \text{ cm}^2$.

- 18. In the figure, ABCD is a rhombus. E and F are points lying on AB and AD respectively such that AE = AF and $\angle ECF = 42^{\circ}$. If $\angle BAD = 110^{\circ}$, then $\angle BEC =$
 - A. 70°.
 - B. 76°.
 - C. 80°.
 - D. 84°.

- 19. In the figure, ABCDE is a regular pentagon. AD and CE intersect at the point F. Which of the following are true?
 - I. CD = CF
 - II. $\triangle ABF \cong \triangle CBF$
 - III. $\angle AFB + \angle EAF = 90^{\circ}$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

- 20. In the figure, ABCD is a square. E is a point lying on AB produced such that BE = 4 cm . BC and DE intersect at the point F. If EF = 5 cm , then DF = 1
 - A. 12 cm.
 - B. 15 cm.
 - C. 16 cm.
 - D. 20 cm.

- 21. In the figure, ABCD is a trapezium with $\angle ABC = \angle BAD = 90^{\circ}$. E and F are points lying on AB such that E and F divide AB into three equal parts. Which of the following must be true?
 - I. $AF \sin \alpha = BE \sin \beta$
 - II. $CE\cos\alpha = DF\cos\beta$
 - III. $AD \tan \alpha = BC \tan \beta$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

- 22. In the figure, ABCD is a circle. AD produced and BC produced meet at the point E. It is given that BD = DE, $\angle BAC = 66^{\circ}$ and $\angle ABD = 30^{\circ}$. Find $\angle CED$.
 - A. 20°
 - B. 28°
 - C. 36°
 - D. 42°

- 23. The figure below consists of eight identical squares. The number of folds of rotational symmetry of the figure is
 - A. 2.
 - B. 4.
 - C. 6.
 - D. 8.

- 24. The polar coordinates of the points C, D and E are (16,127°), (12,217°) and (5,307°) respectively. Find the perimeter of ΔCDE .
 - A. 54
 - B. 78
 - C. 126
 - D. 130
- 25. The equations of the straight lines L_1 and L_2 are 3x-y+7=0 and 12x-4y-11=0 respectively. Let P be a moving point in the rectangular coordinate plane such that the perpendicular distance from P to L_1 is equal to the perpendicular distance from P to L_2 . Find the equation of the locus of P.
 - A. 8x 24y 17 = 0
 - B. 8x 24y + 17 = 0
 - C. 24x 8y 17 = 0
 - D. 24x 8y + 17 = 0
- 26. The equation of the straight line L_1 is 4x+3y-36=0. The straight line L_2 is perpendicular to L_1 and intersects L_1 at a point lying on the y-axis. Find the area of the region bounded by L_1 , L_2 and the x-axis.
 - A. 96
 - B. 108
 - C. 150
 - D. 192
- 27. The equation of the circle C is $5x^2 + 5y^2 30x + 10y + 6 = 0$. Which of the following is true?
 - A. The origin lies inside C.
 - B. C lies in the second quadrant.
 - C. The circumference of C is less than 20.
 - D. The coordinates of the centre of C are (15, -5).

- 28. Two numbers are randomly drawn at the same time from seven cards numbered 1, 1, 1, 2, 2, 3 and 4 respectively. Find the probability that the sum of the numbers drawn is 5.
 - A. $\frac{5}{21}$
 - B. $\frac{5}{42}$
 - C. $\frac{5}{49}$
 - D. $\frac{10}{49}$
- 29. The mean of the numbers of pages of 10 magazines is 132. If the mean of the numbers of pages of 6 of these 10 magazines is 108, then the mean of the numbers of pages of the remaining 4 magazines is
 - A. 148.
 - B. 156.
 - C. 168.
 - D. 176.
- 30. The stem-and-leaf diagram below shows the distribution of the numbers of books read by 20 students in a year.

Stem (tens)	Lea	ıf (uni	ts)				
2	1	2	2	8			
3	а	a					
4	0	2	4	5	5	7	8
5	3						
6	b	b	9	9			
7	0	8					

If the inter-quartile range of the above distribution is at most 25, which of the following must be true?

- I. $5 \le a \le 9$
- II. $0 \le b \le 4$
- III. $1 \le a b \le 6$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

Section B

- 31. Let f(x) be a quadratic function. The figure below may represent the graph of y = f(x) and
 - A. the graph of y = -3f(x).
 - B. the graph of y = f(-3x).
 - C. the graph of y = -f(x+4).
 - D. the graph of y = f(-x+11).

- 32. The figure shows the graph of $y = \log_a x$ and the graph of $y = \log_b x$ on the same rectangular coordinate system, where a and b are positive constants. If a vertical line cuts the graph of $y = \log_a x$, the graph of $y = \log_b x$ and the x-axis at the points A, B and C respectively, which of the following is/are true?
 - I. a > 1
 - II. a > b
 - III. $\frac{AB}{BC} = \log_a \frac{b}{a}$
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only

33. In the figure, the straight line L shows the relation between $\log_4 x$ and $\log_4 y$. It is given that L passes through the points (1, 2) and (9, 6). If $y = kx^a$, then k =

- C. 2.
- D. 8.

34. Consider the following system of inequalities:

$$\begin{cases} x - 21 \le 0 \\ x - y - 35 \le 0 \\ x + 5y - 91 \le 0 \\ 3x + 2y \ge 0 \end{cases}$$

- Let D be the region which represents the solution of the above system of inequalities. If (x, y) is a point lying in D, then the least value of 5x + 6y + 234 is
 - A. 45.
 - B. 150.
 - C. 178.
 - D. 423.
- 35. If the sum of the first n terms of a sequence is $6n^2 n$, which of the following is/are true?
 - I. 22 is a term of the sequence.
 - II. The 1st term of the sequence is 5.
 - III. The sequence is a geometric sequence.
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only

- 36. If $m \neq n$ and $2m^2 + 5m = 2n^2 + 5n = 14$, then (m+2)(n+2) =
 - A. -8.
 - B. 2.
 - C. 6.
 - D. 16.
- 37. The real part of $\frac{2i^{12} + 3i^{13} + 4i^{14} + 5i^{15} + 6i^{16}}{1 i}$ is
 - A. -3.
 - B. -1.
 - C. 1.
 - D. 3.
- 38. For $0^{\circ} \le x < 360^{\circ}$, how many roots does the equation $6\cos^2 x = \cos x + 5$ have?
 - A. 2
 - B. 3
 - C. 4
 - D. 5
- 39. In the figure, TA is the tangent to the circle ABCD at the point A. CD produced and TA produced meet at the point E. It is given that AB = CD, $\angle BAT = 24^{\circ}$ and $\angle AED = 72^{\circ}$. Find $\angle ABC$.
 - A. 60°
 - B. 66°
 - C. 72°
 - D. 78°

- 40. It is given that a is a positive constant. The straight line 2x + 5y = a cuts the x-axis and the y-axis at the points P and Q respectively. Let R be a point lying on the y-axis such that the x-coordinate of the orthocentre of ΔPQR is 10. Find the y-coordinate of R.
 - A. –25
 - B. -4
 - C. 4
 - D. 25
- 41. In the figure, ABCDEFGH is a rectangular block. Let X be a point lying on DE such that DX = 9 cm and EX = 4 cm. Denote the angle between BX and the plane ABGF by θ . Find $\cos \theta$.
 - A. $\frac{3}{5}$
 - B. $\frac{4}{5}$
 - C. $\frac{8}{17}$
 - D. $\frac{15}{17}$

- 42. In a class, there are 14 boys and 15 girls. If 3 students of the same gender are selected from the class to form a team, how many different teams can be formed?
 - A. 819
 - B. 3654
 - C. 4914
 - D. 165 620

- 43. John and Mary take turns to throw a fair die until one of them gets a number '1' or '6'. John throws the die first. Find the probability that John gets a number '6'.
 - A. $\frac{1}{2}$
 - B. $\frac{1}{6}$
 - C. $\frac{3}{10}$
 - D. $\frac{7}{10}$

- 44. In a test, the mean of the test scores is 68 marks. Peter gets 46 marks in the test and his standard score is -2.2. If Susan gets 52 marks in the test, then her standard score is
 - A. -2.5 .
 - B. -1.6.
 - C. -0.6.
 - D. 1.6.

- 45. There are 49 terms in an arithmetic sequence. If the variance of the first 7 terms of the sequence is 9, then the variance of the last 7 terms of the sequence is
 - A. 9.
 - B. 18.
 - C. 49.
 - D. 81.

END OF PAPER