Marking Scheme

This document was prepared for markers' reference. It should not be regarded as a set of model answers. Candidates and teachers who were not involved in the marking process are advised to interpret its contents with care.

General Marking Instructions

- 1. It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates will have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct answer merits all the marks allocated to that part, unless a particular method has been specified in the question. Markers should be patient in marking alternative solutions not specified in the marking scheme.
- 2. In the marking scheme, marks are classified into the following three categories:

'M' marks

awarded for correct methods being used;

'A' marks

awarded for the accuracy of the answers;

Marks without 'M' or 'A'

awarded for correctly completing a proof or arriving

at an answer given in a question.

In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous. However, 'A' marks for the corresponding answers should NOT be awarded (unless otherwise specified).

- 3. For the convenience of markers, the marking scheme was written as detailed as possible. However, it is still likely that candidates would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, markers should exercise their discretion in marking candidates' work. In general, marks for a certain step should be awarded if candidates' solution indicated that the relevant concept/technique had been used.
- 4. In marking candidates' work, the benefit of doubt should be given in the candidates' favour.
- In the marking scheme, 'r.t.' stands for 'accepting answers which can be rounded off to' and 'f.t.' stands for 'follow through'. Steps which can be skipped are whereas alternative answers are enclosed with rectangles. All fractional answers must be simplified.

Solution	Marks	Remarks
1. $9(h+6k) = 7h+8$		
	. IM IM	Communication is an array of the
2h = 8 - 54k	1171	for putting h on one side
h=4-27k	1A	or equivalent
9(h+6k) = 7h+8		
	1M	
	1м	for putting h on one side
$\frac{2h}{2} = \frac{8 - 54k}{2}$	***	
$ \begin{array}{ccc} 9 & 9 \\ 2h = 8 - 54k \end{array} $		
h = 4 - 27k	1A	or equivalent
	(3)	
$\frac{3}{7x-6}-\frac{2}{5x-4}$		
	1 M	
9 (7% - 6) 5x - 45 1 (8x = 14 - 4%) = 73		·
	1M	
$=\frac{x}{(7x-6)(5x-4)}$	1A	or equivalent
	(3)	
$24^2 + (13+r)^2 = (17-3r)^2$	lM	
$576 + 169 + 26r + r^2 = 289 - 102r + 9r^2$		
$8r^2 - 128r - 456 = 0$	[1 M	for $ar^2 + br + c = 0$
$r^2 - 16r - 57 = 0$		
(r+3)(r-19) = 0 r = -3 or $(r+3)(r+3)(r+3)(r+3)(r+3)(r+3)(r+3)(r+3)$	IA	:
Thus, we have $r = -3$.	(3)	:
(a) $4m^2-9$		
= (2m+3)(2m-3)	1A	or equivalent
(b) $2m^2n + 7mn - 15n$		
$= n(2m^2 + 7m - 15)$		
=n(2m-3)(m+5)	1A	or equivalent
(c) $4m^2-9-2m^2n-7mn+15n$		
$=4m^2-9-(2m^2n+7mn-15n)$		
= (2m-3)(2m-mn-5n+3)	IM IA	for using the results of (a) and (b)
= (2m + 3)(2m - mn - 3n + 3)	(4)	or equivalent

	.	Solution	Marks	Remarks
5.	(a)	Let m be the marked price of the wallet. (1-25%)m = 690	IM	
		$m = \frac{690}{0.75}$		THE STATE OF THE S
		m = 920	IA	
		Thus, the marked price of the wallet is \$920.	İ	
	(b)	Let c be the cost of the wallet.	1M	· · · · · · · · · · · · · · · · · · ·
		(1+15%)c = 690 690	IMI	:
		$c = \frac{690}{1.15}$		
		c = 600 Thus, the cost of the wallet is \$600.	1 A	
		That, the cost of the wallet is \$600°,	(4)	
6.	(a)	$\frac{7x+26}{4} \le 2(3x-1)$		
		$7x + 26 \le 24x - 8$		
		$7x - 24x \le -8 - 26$ -17x \le -34	1M	for putting x on one side
		x≥2	1A	
	(b)	$45-5x\geq 0$		
		$x \le 9$ By (a), we have $2 \le x \le 9$.	1A	
		Thus, the required number is 8.	1A (4)	
		en e		·
' .		13k and 6k be the original number of adults and the original number of free in the playground respectively $\frac{1}{2}$	1A	can be absorbed
	13k	+9 _ 8	1M+1A	can be absorbed
	6k +	+24 7	INITIA	
	$91k \cdot k = 3$	-48k = 192 - 63		
	Thus	s, the original number of adults in the playground is 39.	İΑ	
	child	x and y be the original number of adults and the original number of ren in the playground respectively.		
	$\frac{x}{y}$	$=\frac{13}{6}$	n l	
	5)		IA+IA	
	(y	$\frac{+9}{+24} = \frac{8}{7}$	J	
	17	= 13 <i>y</i>		
	1 '	-8y = 129		
	So, w	we have $7x - 8\left(\frac{6x}{13}\right) = 129$.	IM	for getting a linear equation in x or y only
		ing, we have $x = 39$.	1 A	
	Thus	, the original number of adults in the playground is 39.	(4)	
			` '	
				•

	Solution	Marks	Remarks
3. (a)	2	lA	
(b)	Note that $360^{\circ} - 54^{\circ} - 90^{\circ} - 144^{\circ} = 72^{\circ}$.		
	The mean of the distribution		
	$= \frac{2(144) + 3(54) + 5(72) + 7(90)}{2(144) + 3(54) + 5(72) + 7(90)}$	1M	
	360 = 4	1A	ļ ·
	•	17	
(c)	The required probability		
	$=\frac{72+90}{360}$	IМ	
	360 9		·
	$=\frac{9}{20}$	IA	0.45
	The required probability		
	360 – 54 – 144	 	
	360	1 M	
	<u> 9</u>	1A	0.45
	20		
		(5)	
]	
(a)	Note that the ratio of the radius of the larger sphere to the radius of the		
	smaller sphere is 2:1.		
	So, the ratio of the volume of the larger sphere to the volume of the smaller sphere is 8:1.	1M	
	·		
	The volume of the larger sphere		
	$=324\pi\left(\frac{8}{1+8}\right)$		
		,,	
	$=288\pi \text{ cm}^3$	1 A	
(b)	Let R cm be the radius of the larger sphere.		
	$\frac{4}{3} = 288\pi$	114	
	$\frac{4}{3}\pi R^3 = 288\pi$	1M	
	R=6 So, the radius of the smaller sphere is 3 cm .		
	50, the factor of the sindier sphere is "Jeni".]]	
	The sum of the surface areas of the two spheres		
-	$=4\pi(6^2)+4\pi(3^2)$	IM	
	$=180\pi \text{ cm}^2$	1A	
		(5)	
		1	
		1 1	

	Solution	Marks	Remarks
10. (a)	Let $h(x) = r + sx$ where and are non-known sands. So, we have $r - 2s = -96$ and $r + 5s = 72$. Solving, we have $r = -48$ and $s = 24$. Thus, we have $h(x) = 24x - 48$.	1A 1M 1A	for either substitution for both correct
(b)	$h(x) = 3x^2$ $3x^2 - 24x + 48 = 0$ $x = 4$	IM 1A (2)	
11. (a)	Let $ax + b$ be the required quotient, where $a = ax + b = b$. Then, we have $a = ax + b = b = b$. Note that $a = ax + b = b = b$. Hence, we have $a = ax + b = b = b = b$. So, we have $a = ax + b = b = b = b = b$. Solving, we have $a = ax + b = b = b = b$. Thus, the required quotient is $ax + b = b$.	IM IM	for either one for both correct
(b)	$p(x) = 0$ $(5x-3)(2x^2+9x+14) = 0 (by (a))$ $5x-3=0 or 2x^2+9x+14=0$ $9^2-4(2)(14)$ $=-31$	1M	
	So, the quadratic equation $2x^2+9x+14=0$ does not have real roots. Note that $\frac{3}{5}$ is a rational root of the equation $p(x)=0$. Thus, the equation $p(x)=0$ has 1 rational root.	1M 1A (3)	f.t.

			Solution	Marks	Remarks
12.	(a)	72 - c =	-(60+c)=8	1M 1A (2)	
	(b)	(i)	(80+b)-(50+a) > 34 b-a>4	1M	
			$\frac{50 + a + 60(2) + 63 + 64(2) + 68 + 69(3) + 70 + 71(3) + 72(2) + 75 + 76 + 79 + 80 + b}{20} = 69$	1M	
			Therefore, we have $a+b=7$. Thus, we have $\begin{cases} a=0 \\ b=7 \end{cases}$ or $\begin{cases} a=1 \\ b=6 \end{cases}$.	lA+IA	1A for one pair + 1A for all
		(ii)	By (b)(i), there are two cases.		
			Case 1: $a = 0$ and $b = 7$ The standard deviation of the distribution ≈ 7.582875444	1M	
			Case 2: $a = 1$ and $b = 6$ The standard deviation of the distribution ≈ 7.341661937		either one
			Thus, the least possible standard deviation of the distribution is 7.34 seconds.	1 A	f.t.
			Note that $(50-69)^2 + (87-69)^2 > (51-69)^2 + (86-69)^2$.	1M	
			When $a=1$ and $b=6$, the standard deviation of the distribution is the least. The standard deviation ≈ 7.341661937		
			Thus, the least possible standard deviation of the distribution is 7.34 seconds.	1A (6)	f.t.
				(0)	
	•				
y -0					

	Solution	Marks	Remarks
(a) Note that	$\angle ABF + \angle AED = 180^{\circ}$.	1M	
So, we ha	ve $\angle ABF + 115^{\circ} = 180^{\circ}$.		
Hence, w	e have $\angle ABF = 65^{\circ}$.		
Also note	that $\angle ABC = 90^{\circ}$.	1M	
Therefore	, we have $\angle CBF + 65^{\circ} = 90^{\circ}$.		
Thus, we	have $\angle CBF = 25^{\circ}$.	1A	
∠AOL)		·
	2∠AED	1 M	
= 360° -			;
= 130°	` ,		
∠COI			
= 180° -		l IM	
= 180° -	130°		
	$\angle CBF = \angle COD$, we have $\angle CBF = 25^{\circ}$.	1A	
Onice 2.	LODI - LODI - ES .	(3)	
b) ∠ <i>ODF</i> =	$\angle CBF = 25^{\circ}$	1M	
$\angle OBF =$	∠ <i>ODF</i> = 25°	1M	
∠DOF			
= 2∠ <i>CBF</i>	,		
$=2(25^{\circ})$			•
= 50°			
∠BOC			
= 180°	∠DOF - ∠OBF - ∠ODF	iм	
	50°-25°-25°		
= 80°			
The per	imeter of the sector OBC		
$-\frac{80}{12\pi}$	(18))+2(18)	1M	
		1141	
$= 8\pi + 36$			
> 8(3) + 3 = 60	0		
	perimeter of the sector OBC is not less than 60 cm.	1A	f.t.
	∠CBF = 25°		
	$\angle ODF = 25^{\circ}$	IM IM	
		1171	
∠BOC			
	∠COD – ∠OBF – ∠ODF	IM I	
I	50° – 25° – 25°		
= 80°			
1	rimeter of the sector OBC		
$=\frac{80}{100}$ (2)	r(18)+2(18)	1 M	
1			
$= 8\pi + 36$ > 8(3) + 3			•
= 60	-		
I	perimeter of the sector OBC is not less than 60 cm.	l IA	f.t.
<u> </u>	_	(5)	

	Solt	Marks	Remarks	
Markin	g Schemes for (a)(i) and (a)(ii) :		
Case 1	Any correct proof with c		2] ·
Case 2	Any correct proof withou	t reasons.	1	
(a) (i)	BC = BC	(common side)		
	$\angle BCG = \angle CBF$	(alt. \angle s, $CG//DB$)	İ	
	$\angle CBG = \angle BCF$	(alt. $\angle s$, $BG//EC$)		
	$\Delta BCG \cong \Delta CBF$	(ASA)		
(ii)	$\angle CBF = \angle EDF$	(alt. \angle s, $BC//ED$)		
	$\angle BFC = \angle DFE$	(vert, opp. ∠s)		
	ABCE = /BDWF	(LZ smin of AC)		
	$\Delta BCF \sim \Delta DEF$	(AAA)	(4)	(AA) (equiangular)
			(4)	
(b) (i)	By (a)(i), we have $\angle BGG$ Since $\angle BGE = \angle BGG$	$C = \angle BFC$. we have $\angle BCF = \angle BFC$.		
	Therefore, we have $BF =$		1 M	
	Since $BD\cos 45^\circ = \ell$, w	_	1141	
	Suice BBoosts Se, w	Chave DD = 4 20.		
	DF		***	
	= BD - BF			
	$=\sqrt{2}\ell-\ell$	·	1A	
	$=(\sqrt{2}-1)\ell$			
(ii)		cosceles triangle with $BC = BF$. sosceles triangle with $DE = DF$.		
	·	ū		
	AE = AD - DE		•	
	= AD - DF			
	$= \ell - (\sqrt{2} - 1)\ell \qquad \text{(by)}$	(b)(i))	1M	for using the result of (b)(i)
	$=(2-\sqrt{2})\ell$			
	$>\left(2-\frac{3}{2}\right)\ell$			•
	ℓ			
	$=\frac{\ell}{2}$			
	Note that $AE + DE = \ell$.			
	So, we have $DE < \frac{\ell}{2}$.			
	Since $DE = DF$, we have	ve DF < t		
		<i>L</i>		
	Therefore, we have $AE >$ Thus, the claim is agreed.	DF ,	1A	f.t.
	Thus, the claim is agreed.		(4)	Lite
			``	

Solution	Marks	Remarks
The required number $= C_5^{32} - C_5^{11}$ = 200 914	IM+IM IA	$\begin{cases} 1M \text{ for } C_p^m - C_q^n \\ +1M \text{ for either one} \end{cases}$
The required number $= C_1^{21}C_4^{11} + C_2^{21}C_3^{11} + C_3^{21}C_2^{11} + C_4^{21}C_1^{11} + C_5^{21}$ $= 200 914$	1M+1M 1A	1M for considering 5 cases +1M for either one
	(3)	
(a) Putting $\beta = 5\alpha - 18$ in $\beta = \alpha^2 - 13\alpha + 63$, we have $5\alpha - 18 = \alpha^2 - 13\alpha + 63$	1M	
$\alpha^2 - 18\alpha + 81 = 0$ Solving, we have $\alpha = 9$ and $\beta = 27$.	1A	for both correct
	(2)	201 OOHI OOIIOQI
(b) Let $T(n)$ be the <i>n</i> th term of the arithmetic sequence. Since $T(1) = \log 9 = \log 3^2 = 2 \log 3$ and $T(2) = \log 27 = \log 3^3 = 3 \log 3$, the common difference of the sequence is $\log 3$. $T(1) + T(2) + T(3) + \cdots + T(n) > 888$ $2 \log 3 + 3 \log 3 + 4 \log 3 + \cdots + (n+1) \log 3 > 888$	IМ	for either one
$\frac{n}{2}(2(2\log 3) + (n-1)\log 3) > 888$	1M	
$(\log 3)n^2 + (3\log 3)n - 1776 > 0$ n < -62.52928981 or $n > 59.52928981Thus, the least value of n is 60.$	IM IA	
Let $T(n)$ be the <i>n</i> th term of the arithmetic sequence. Since $T(1) = \log 9 = \log 3^2$ and $T(2) = \log 27 = \log 3^3$, the common difference of the sequence is $\log 3$. $T(1) + T(2) + T(3) + \cdots + T(n) > 888$ $\log 9 + \log 27 + \log 81 + \cdots + \log 3^{n+1} > 888$ $\log 3^2 + \log 3^3 + \log 3^4 + \cdots + \log 3^{n+1} > 888$ $\log \left(3^2 \cdot 3^3 \cdot 3^4 \cdots 3^{n+1}\right) > 888$ $\log \left(3^{2+3+4+\cdots+(n+1)}\right) > 888$	IM IM	

Solution	Marks	Remarks
7. (a) $\frac{r(CD)}{2} + \frac{r(DE)}{2} + \frac{r(CE)}{2} = a$	IM	
r(CD + DE + CE) = 2a $pr = 2a$	1	
	(2)	
(b) (i) Γ is the angle bisector of $\angle OHK$.	1M	
(ii) <i>OH</i>		
$= \sqrt{9^2 + 12^2} $ = 15		
НК		
$=\sqrt{(9-14)^2+12^2}$		
= 13		
Note that the area of $\triangle OHK = \frac{14(12)}{2} = 84$. Also note that the perimeter of $\triangle OHK = 13 + 14 + 15 = 42$.		
Let r be the radius of the inscribed circle of $\triangle OHK$.		
By (a), we have $42r = 2(84)$. So, we have $r = 4$.	1M	for using (a)
Let $(h,4)$ be the coordinates of the in-centre of $\triangle OHK$.		
Hence, we have $(15-h)+(14-h)=13$ Therefore, we have $h=8$	1M	
The slope of $arGamma$		
$=\frac{12-4}{9-8}$		
= 8		•
The equation of Γ is $y-4=8(x-8)$	13.4	
8x - y - 60 = 0	IM 1A	or equivalent
	(5)	
•		•

		Solution	Marks	Remarks
8. (a	ı) (i	$\frac{\sin \angle BAD}{BD} = \frac{\sin \angle ABD}{AD}$ $\frac{\sin \angle BAD}{\sin \angle BAD} = \frac{\sin 72^{\circ}}{\sin 72^{\circ}}$	1M	
		12 13 $\angle B = 0.00869868 = 0.00268209 \approx 0.00869000 = 0.00869000 = 0.00869000 = 0.00869000000000000000000000000000000000$	IA	r.t. 61.4°
	(ii	•		•
		∠ADB ≈ 46.61013064°		
		$\cos \angle ADB = \frac{AD - AP}{BD}$ $AP \approx 13 - 12\cos 46.61013064^{\circ}$	1M	
		AP ≈ 4.756491614		
		Note that $\angle CAP = 60^{\circ}$.		
		By cosine formula, we have		
		$CP^2 = AC^2 + AP^2 - 2(AC)(AP)\cos\angle CAP$	1M	
		$CP^2 \approx 13^2 + 4.756491614^2 - 2(13)(4.756491614)\cos 60^\circ$		
		(17.64 13.9253.65) CP ≈ 11.4 cm	, ta	-4 11 4
		CF ≈ 11.4 cm	IA.	r.t. 11.4 cm
		By sine formula, we have		
		AB = AD		
		$\sin \angle ADB \sin \angle ABD$		
		$\frac{AB}{\sin(180^\circ - 72^\circ - 61.38986936^\circ)} \approx \frac{13}{\sin 72^\circ}$		
		$AB \approx 9.933216094$		
		$\cos \angle BAD = \frac{AP}{AB}$	IM	
		$AP = AB\cos \angle BAD$		
		AP ≈ 4.756491614		
		Note that $\angle CAP = 60^{\circ}$.		
		By cosine formula, we have		
		$CP^2 = AC^2 + AP^2 - 2(AC)(AP)\cos\angle CAP$	1M	
		$CP^2 \approx 13^2 + 4.756491614^2 - 2(13)(4.756491614)\cos 60^\circ$		
		<u>(CP ≈ 11.4 cm</u> CP ≈ 11.4 cm	1 A	r.t. 11.4 cm
		CF 417.4 cm	(5)	r.t. 11.4 Cm
			(5)	
(b)) .	$4P^2 + CP^2$		
	≈ •	4.756491614 ² +11.39253359 ²		
		52.4140341		
		$4C^2$		
		69		
		nce, we have $AP^2 + CP^2 \neq AC^2$.	13.5	
		erefore, $\angle APC$ is not a right angle. $\angle BPC$ is not the angle between the face ABD and the face ACD .	1M	
		us, the claim is not correct.	1A	f.t.
	411		(2)	3.6.

	Solution	Marks	Remarks
19. (a)	f(4)	,	
	$= \frac{1}{1+k} \left(4^2 + 4(6k-2) + (9k+25) \right)$		
	1 1 6		
	$= \frac{1}{1+k}(33+33k)$	1.	
	= 33 Thus, the graph of $y = f(x)$ passes through F .	1 1	
		(1)	
(b)	(i) $g(x)$		
	= f(-x) + 4	1M	
	$= \frac{1}{1+k} \left((-x)^2 + (6k-2)(-x) + (9k+25) \right) + 4$		
	$= \frac{1}{1+k} \left(x^2 - (6k-2)x + (3k-1)^2 - (3k-1)^2 + (9k+25) \right) + 4$	1M	for completing the square
	$= \frac{1}{k+1} ((x-3k+1)^2 - (k+1)(9k-24)) + 4$		
	$= \frac{1}{k+1}(x-(3k-1))^2 + (28-9k)$	1M	
	Thus, the coordinates of U are $(3k-1, 28-9k)$.	1A	
	(ii) Note that the area of the circle passing through F and O is the least when FO is a diameter of the circle. If U lies on this circle, then we have $\angle FUO = 90^{\circ}$.	IМ	
	Under this case, we have $k \neq \frac{1}{3}$ and $k \neq \frac{5}{3}$.		
	$\left(\frac{(28-9k)-0}{(3k-1)-0}\right)\left(\frac{33-(28-9k)}{4-(3k-1)}\right) = -1$	1M+IA	
	$\frac{(28-9k)(5+9k)}{(3k-1)(5-3k)} = -1$		
	$2k^2 - 5k - 3 = 0$		
	$k=3$ or $\frac{1}{2}$ (rejudicely)	IA.	
	Thus, the area of the circle passing through F , O and U is the least when $k=3$.		
	Note that the area of the circle passing through F and O is the least when FO is a diameter of the circle.	1114	
	Let M be the mid-point of FO. The coordinates of M	1M	
	$=\left(2,\frac{33}{2}\right)$		
-	If U lies on this circle, then we have $FO = 2MU$.		
~ 3	$\sqrt{(0-4)^2+(0-33)^2}=2\sqrt{(2-(3k-1))^2+\left(\frac{33}{2}-(28-9k)\right)^2}$	1M+1A	
	$2k^2 - 5k - 3 = 0$		
	$k=3$ or $N=\frac{1}{2}$ (17) $C=0$ $C=0$ $C=0$ Thus, the area of the circle passing through F , O and U is the	1A	
	least when $k=3$.		

Solution	Marks	Remarks
(iii) The coordinates of G are $(-4,37)$. The product of the slope of FG and the slope of GO	1A	
$= \left(\frac{37-33}{-4-4}\right)\left(\frac{37-0}{-4-0}\right)$	1M	
= 37		
8 ≠-1		•
So, we have $\angle FGO \neq 90^{\circ}$. Since $\angle FVO = 90^{\circ}$, G does not lie on the circle passing through		, sa
F, O and V . Thus, F , G , O and V are not concyclic.	1A	f.t.
When the area of the circle passing through F , O and V is the least, FO is a diameter of the circle.		
The coordinates of G are $(-4,37)$. FO^2	1A	
=1105	1 M	
GO ² =1385		any one
FG^2		
$= 80$ $FG^2 + GO^2$		
= 1 465		
As $FG^2 + GO^2 \neq FO^2$, $\angle FGO$ is not a right angle. Since $\angle FVO = 90^\circ$, G does not lie on the circle passing through		
F, O and V. Thus, $F, G, O and V are not concyclic.$	1A	f.t.
When the area of the circle passing through F , O and V is the least, FO is a diameter of the circle. The coordinates of the centre of the circle passing through F , O and V	·	
$=\left(2,\frac{33}{2}\right)$		
Note that the circle passes through (0,0).		
Let $x^2 + y^2 + Dx + Ey = 0$ be the equation of the circle passing through F , O and V .		
So, we have $\frac{-D}{2} = 2$ and $\frac{-E}{2} = \frac{33}{2}$.	1M	
Solving, we have $D = -4$ and $E = -33$.		
Therefore, the equation of the circle passing through F , O and V is $x^2 + y^2 - 4x - 33y = 0$.		
Also note that the coordinates of G are $(-4,37)$.	1A	
Since $(-4)^2 + (37)^2 - 4(-4) - 33(37) \neq 0$, G does not lie on the circle passing through F, O and V.		
Thus, F , G , O and V are not concyclic.	1A	f.t.
	(11)	

Paper 2

Question No.	Key	Question No.	Key
1.	C (67)	26.	D (68)
2.	D (88)	27.	B (56)
3.	B (90)	28.	C (66)
4.	C (69)	29.	B (84)
5,	A (75)	30.	C (78)
6.	D (80)	31.	B (34)
7.	B (61)	32.	D (35)
8.	C (69)	33.	A (61)
9.	D (65)	34.	D (46)
10.	A (68)	35.	C (53)
11.	C (79)	36.	C (41)
12.	B (66)	37.	A (31)
13.	A (69)	38.	A (35)
14.	C (91)	39.	B (49)
15.	D (61)	40.	C (38)
16.	D (25)	41.	B (44)
17.	A (58)	42.	C (65)
18.	D (26)	43.	D (47)
19.	A (85)	44.	B (72)
20.	C (51)	45.	A (56)
21.	B (53)		
22.	B (59)		
23.	A (32)		
24.	A (65)		
25.	D (69)		

Note: Figures in brackets indicate the percentages of candidates choosing the correct answers.