香港考試及評核局 HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY

2022年香港中學文憑考試 HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2022

數學 必修部分 試卷-MATHEMATICS COMPULSORY PART PAPER 1

評卷參考 MARKING SCHEME

本評卷參考乃香港考試及評核局專為今年本科考試而編寫,供閱卷員參考之用。本評卷參考之使用,均受制於閱卷員有關之服務合約條款及閱卷員指引。 特別是:

- 本局擁有並保留本評卷參考的所有財產權利(包括知識產權)。在未獲本局之書面批准下,閱卷員均不得複製、發表、透露、提供、使用或經營本評卷參考之全部或其部份。在遵守上述條款之情況下,本局有限地容許閱卷員可在應屆香港中學文憑考試的考試成績公布後,將本評卷參考提供任教本科的教師參閱。
- 在任何情況下,均不得容許本評卷參考之全部或其部份落入學生手中。本局籲請各閱卷員/教師通力合作,堅守上述原則。

This marking scheme has been prepared by the Hong Kong Examinations and Assessment Authority for the reference of markers. The use of this marking scheme is subject to the relevant service agreement terms and Instructions to Markers. In particular:

- The Authority retains all proprietary rights (including intellectual property rights) in this marking scheme. This marking scheme, whether in whole or in part, must not be copied, published, disclosed, made available, used or dealt in without the prior written approval of the Authority. Subject to compliance with the foregoing, a limited permission is granted to markers to share this marking scheme, after release of examination results of the current HKDSE examination, with teachers who are teaching the same subject.
- Under no circumstances should students be given access to this marking scheme or any part of it. The Authority is counting on the co-operation of markers/teachers in this regard.

⑥香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved

Hong Kong Diploma of Secondary Education Examination Mathematics Compulsory Part Paper 1

General Marking Instructions

- 1. It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates will have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct answer merits *all the marks* allocated to that part, unless a particular method has been specified in the question. Markers should be patient in marking alternative solutions not specified in the marking scheme.
- 2. In the marking scheme, marks are classified into the following three categories:

'M' marks

awarded for correct methods being used; awarded for the accuracy of the answers;

Marks without 'M' or 'A'

awarded for correctly completing a proof or arriving at an answer given in a question.

In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous. However, 'A' marks for the corresponding answers should NOT be awarded (unless otherwise specified).

- 3. For the convenience of markers, the marking scheme was written as detailed as possible. However, it is still likely that candidates would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, markers should exercise their discretion in marking candidates' work. In general, marks for a certain step should be awarded if candidates' solution indicated that the relevant concept/technique had been used.
- 4. In marking candidates' work, the benefit of doubt should be given in the candidates' favour.
- 5. In the marking scheme, 'r.t.' stands for 'accepting answers which can be rounded off to' and 'f.t.' stands for 'follow through'. Steps which can be skipped are shaded whereas alternative answers are enclosed with rectangles. All fractional answers must be simplified.

Solution	Marks	Remarks
1. $\frac{(a^3b^{-2})^4}{a^{-5}b^6}$		
$= \frac{a^{12}b^{-8}}{a^{-5}b^{6}}$ $= \frac{a^{12+5}}{b^{6+8}}$	1M	for $(m^h)^k = m^{hk}$ or $(mn)^l = m^l n$
	1M	for $\frac{x^p}{x^q} = x^{p-q}$ or $y^{-r} = \frac{1}{y^r}$
$=\frac{a^{17}}{b^{14}}$	1A	
	(3)	
Note that $x + y = 456$ and $7x = y$.	1A	for either correct
So, we have $x + 7x = 456$. Solving, we have $x = 57$.	1M 1A	for getting a linear equation in x or y on
$=\frac{x}{456}$ $=\frac{456}{1+7}$	1M+1A	1M for fraction
1+7 = 57	1A	Tivi for haction
	(3)	
3 2		-
$\frac{3}{k-9} + \frac{2}{5k+6}$ $= \frac{3(5k+6) + 2(k-9)}{(k-9)(5k+6)}$	1M	
$=\frac{15k+18+2k-18}{(k-9)(5k+6)}$	1M	
$=\frac{17k}{(k-9)(5k+6)}$	1A	or equivalent
	(3)	
(a) $9c^2 - 6c + 1$ = $(3c - 1)^2$	1A	or equivalent
(b) $(4c+d)^2 - 9c^2 + 6c - 1$		
$= (4c+d)^2 - (9c^2 - 6c + 1)$ = $(4c+d)^2 - (3c-1)^2$	1M	for using the result of (a)
= (4c+d+3c-1)(4c+d-(3c-1)) = $(7c+d-1)(c+d+1)$	1M 1A	or equivalent
	(4)	
022-DSE-MATH-CP 1-3		

機密 (只限閲卷員使用)

CONFIDENTIAL (FOR MARKER'S USE ONLY)

		Solution	Marks	Remarks
5.	Let	x be the cost of the fan.		
	(26	% (x) = 78	1M	
	v -	78 0.26		
	x =	300		
		The selling price of the fan		
		00 + 78	1M	
	=\$	378		
	Let	\$ y be the marked price of the fan.		
		%)y = 378	1M	
		378		
		$\frac{378}{0.7}$		
	-	540	1A	
	Thu	s, the marked price of the fan is \$540.		
	Т	he marked price of the fan		
	_ (78)(1+26%)		1M for fraction + 1M for numerator
	- (26%)(70%)	1M+1M+1M	+ 1M for denominator
	=\$	540	1A	
			(4)	
_	<i>(</i>)	0/2 + 0) + 10		
6.	(a)	-2(3x+2) > x+10 $-6x-4 > x+10$		
		-6x - 4 > x + 10 -6x - x > 10 + 4	1M	for putting x on one side
		-0x - x > 10 + 4 -7x > 14	111/1	for putting x on one side
		x < -2	1A	
		* 2		
		$2x \le -8$		
		$x \le -4$		
		Therefore, we have $x < -2$ or $x \le -4$.		
		Thus, the solution of (*) is $x < -2$.	1A	4.7
	(b)	-3	1A	
			(4)	
7.	(a)	The coordinates of S' are $(5,12)$.	1A	
7.	(a)	The coordinates of S are $(5,12)$. The coordinates of T' are $(-3,7)$.	1A	*
		The coordinates of T are $(-3, 7)$.	IA.	
	(b)	The slope of $S'T'$		
		$=\frac{12-7}{5-(-3)}$	1M	

		$=\frac{5}{8}$	1A	0.625
		8	(4)	
			(4)	
2022	2-DSE	-MATH-CP 1–4		

		Solution		Marks	Remarks
8.	(a)	$\angle CAD = \angle ADE$ (a $\angle ACB = \angle ADE$ $\angle ABC = \angle AED$ (g $AB = AE$ (g	lt. ∠s, AD BC) lt. ∠s, AC ED) iven) iven)		[(內)錯角, AD // BC] [(內)錯角, AC // ED] [已知] [已知]
		Marking Scheme: Case 1 Any correct proof with correct proof without		2	
	(b)	$\angle BAC$ $= \angle DAE$ $= 87^{\circ}$		1M	
		$\angle ACB$ $= 180^{\circ} - \angle BAC - \angle ABC$ $= 180^{\circ} - 87^{\circ} - 39^{\circ}$ $= 54^{\circ}$			
		$\angle CAD$ $= \angle ACB$ $= 54^{\circ}$			
		Note that $AC = AD$. $\angle ACD$ $= \angle ADC$ $180^{\circ} - \angle CAD$			
		$= \frac{180^{\circ} - \angle CAD}{2}$ $= \frac{180^{\circ} - 54^{\circ}}{2}$ $= 63^{\circ}$		1M 1A (5)	
9.	(a) (b)	12 Note that $a = 3$ and $b = 5$.		1A	
	(0)	The mean $= \frac{12(3) + 17(9) + 22(5) + 27(3)}{20}$ = 19 minutes		1M 1A	
	(c)	The required probability $= \frac{12}{20}$ $= \frac{3}{5}$		1M 1A	for numerator 0.6
		,		(5)	
2022	2-DSE	-MATH-CP 1–5	1		

		Solution	Marks	Remarks
10. (a)	So, we have 1 Solving, we ha	$a^2 + bx$, where a and b are non-zero constants. $a^2 + bx = 96$ and $a^2 + b = 15$. $a^2 + bx = 96$ and $a^2 + b = 15$. $a^2 + bx = 96$ and $a^2 + b = 15$. $a^2 + bx = 96$ and $a^2 + b = 15$. $a^2 + bx = 96$ and $a^2 + b = 15$.	1A 1M 1A	for either substitution for both correct
(b)	The x-intercept	as of the graph of $y = 8f(x)$ are 0 and -4.	1A (1)	for both correct
(c)	The equation $12^2 - 4(3)(-k)$ k > -12	$3x^2 + 12x - k = 0$ has two distinct real roots. > 0	1M 1A (2)	
11. (a)	36 - (20 + a) = a = 2 $30 + b = 31$	14	1M 1A	
	<i>b</i> = 1		1A (3)	
(b)	(i) The original to the new The new	ginal mode	1M	either one
	= 36			<u>-</u>
		re is no change in the mode of the distribution. two cases.	1A	f.t.
	Case 1:	The player of age 17 leaves the football team. The standard deviation of the distribution ≈ 7.162537194 The player of age 43 leaves the football team. The standard deviation of the distribution ≈ 7.132307207	1M	either one
	Thus, the is 7.16.	greatest possible standard deviation of the distribution	1A (4)	f.t.
2022-DSE	-MATH-CP 1–6			

Solution	Marks	Remarks
12. (a) The coordinates of $G = \left(\frac{154}{2}, \frac{128}{2}\right)$ = (77, 64)	1M	
The distance between G and H = $\sqrt{(77-65)^2+(64-48)^2}$ = 20	1M 1A (3)	
(b) (i) GH is perpendicular to GP .	1M	
(ii) The radius of C = $\sqrt{\left(\frac{154}{2}\right)^2 + \left(\frac{128}{2}\right)^2 - 224}$ = 99	1M	
$HP^2 = GH^2 + GP^2$ $HP^2 = 20^2 + 99^2$	1M	
$HP = 20^{-} + 99^{-}$ HP = 101		
The perimeter of $\triangle GHP$ = $GH + GP + HP$ = $20 + 99 + 101$ = 220	1A (4)	
2022-DSE-MATH-CP 1–7		

	Solution	Marks	Remarks
13. (a)	The ratio of the volume of the smaller sphere to the volume of the larger sphere is $8:27$. The volume of the smaller sphere	1M	
	$=\frac{4}{3}\pi(9)^3\left(\frac{8}{27}\right)$	1M	
	$=288\pi \text{ cm}^3$	1A	
<i>a</i> >		(3)	
(b)	The volume of A	13.4	
	$=\frac{1}{3}\pi(6^2)(10)$	1M	
	$= 120\pi \text{ cm}^3$		
	The volume of B		
	$=288\pi + \frac{4}{3}\pi(9)^3 - 120\pi$	1M	
	$=1140\pi \text{ cm}^3$		
	The volume of B		
	The volume of A		
	$=\frac{1140\pi}{120\pi}$	1M	
	$=\frac{19}{2}$		
			either one
	$\left(\frac{\text{The base radius of } B}{\text{The base radius of } A}\right)^3$		
	$= \left(\frac{12}{6}\right)^3$		
	= 8 		
	$\neq \frac{19}{2}$ So, A and B are not similar.		
	Thus, the claim is not correct.	1A	f.t.
		(4)	
2022-DSE	-MATH-CP 1–8		

	Solution	Marks	Remarks
	Solution	IVIAIKS	Remarks
14. (a)	Let $p(x) = (mx + n)(x^2 - 2x + 3) + x + 13$, where m and n are constants.	1M	
	Therefore, we have $p(x) = mx^3 + (n-2m)x^2 + (3m-2n+1)x + 3n + 13$.		
	So, we have $m = 2$ and $3n+13 = -20$.	1M	for either one
	Solving, we have $m = 2$ and $n = -11$.		
	Hence, we have $p(x) = 2x^3 - 15x^2 + 29x - 20$. Thus, we have $a = -15$ and $b = 29$.	1.4	for both correct
	Thus, we have $u = -15$ and $v = 29$.	1A	for both correct
(b)		1M	
	$= 2(5)^3 - 15(5)^2 + 29(5) - 20$		
	= 0 Thus, $x-5$ is a factor of $p(x)$.	1A	f.t.
	Thus, $x = 3$ is a factor of $p(x)$.	(2)	1.1.
(c)	p(x) = 0		
	$(x-5)(2x^2-5x+4)=0$	1M	
	$x-5=0$ or $2x^2-5x+4=0$		
	$(-5)^2 - 4(2)(4)$	1M	
	= -7 < 0		
	So, the quadratic equation $2x^2 - 5x + 4 = 0$ has no real roots.		
	Hence, the quadratic equation $2x^2 - 5x + 4 = 0$ has no irrational roots.		
	Note that 5 is not an irrational number.		
	Therefore, the equation $p(x) = 0$ has no irrational roots.		
	Thus, the claim is disagreed.	1A	f.t.
		(3)	
2022-DSI	E-MATH-CP 1–9		

		Solution	Marks	Remarks
15.	(a)			
		$=\frac{C_2^{10}C_2^{12}}{C_4^{22}}$	1M	for numerator
		$=\frac{54}{133}$	1A	r.t. 0.406
		The required probability		
		$= 6\left(\frac{10}{22}\right)\left(\frac{9}{21}\right)\left(\frac{12}{20}\right)\left(\frac{11}{19}\right)$	1M	for $6p_1p_2p_3p_4$
		$=\frac{54}{133}$	1A	r.t. 0.406
	<i>a</i> >		(2)	
	(b)	The required probability 54	124	
		$=1-\frac{54}{133}$	1M	for 1-(a)
		$=\frac{79}{133}$	1A	r.t. 0.594
		The required probability		
		$= \frac{C_4^{10}}{C_4^{22}} + \frac{C_3^{10}C_1^{12}}{C_4^{22}} + \frac{C_1^{10}C_3^{12}}{C_4^{22}} + \frac{C_4^{12}}{C_4^{22}}$	1M	for n + n + n + n
			1111	for $p_5 + p_6 + p_7 + p_8$
		$=\frac{79}{133}$	1A	r.t. 0.594
			(2)	
16.	(a)	g(x)		
		$= 3x^{2} + 12kx + 16k^{2} + 8$ $= 3(x^{2} + 4kx) + 16k^{2} + 8$		
		$= 3(x^{2} + 4kx) + 16k^{2} + 8$ $= 3(x^{2} + 4kx + 4k^{2}) + 4k^{2} + 8$	1M	
		$= 3(x+2k)^2 + 4k^2 + 8$	1111	
		Thus, the coordinates of the vertex are $(-2k, 4k^2 + 8)$.	1A	
			(2)	
	(b)	The coordinates of B are $(2k, 8k^2 + 16)$.	1M	
		Note that $AM: MB = 1:3$.		
		The coordinates of M		
		$= \left(\frac{3(-2k) + (2k)}{1+3}, \frac{3(4k^2+8) + (8k^2+16)}{1+3}\right)$	1M	
		$=(-k, 5k^2+10)$	1A	
			(3)	
2000	D.~=	MATTI OD 1 10		
2022	-DSE	-MATH-CP 1-10	1 1	

機密 (只限閱卷員使用)

CONFIDENTIAL (FOR MARKER'S USE ONLY)

17. (a) Note that $\alpha + \beta = -c$ and $\alpha\beta = -9$. $\alpha^2 + \beta^2$ $= (\alpha + \beta)^2 - 2\alpha\beta$ $= (-c)^2 - 2(-9)$ $= c^2 + 18$ 18. (b) $\alpha^2 + \beta^2 - c^3 = 85 - (\alpha^2 + \beta^2)$ $c^2 + 18 - c^2 = 85 - (c^2 + 18)$ $c^2 = 49$ Note that the 1st term and the common difference of the sequence are 49 and 18 respectively. $\frac{\pi}{2}(2(49) + 18(n - 1)) > 2 \times 10^6$ $9n^2 + 40n - 2 \times 10^6 > 0$ $n < \frac{-40 - \sqrt{40^2 - 4(9)(-2 \times 10^6)}}{2(9)}$ or $n > \frac{-40 + \sqrt{40^2 - 4(9)(-2 \times 10^6)}}{2(9)}$ $n < \frac{-473,631)808}{2(9)}$ or $n > \frac{-40 + \sqrt{40^2 - 4(9)(-2 \times 10^6)}}{2(9)}$ Thus, the least value of n is 470.			Solution Solution	Marks	Remarks
$= (\alpha + \beta)^2 - 2\alpha\beta$ $= (-0)^2 - 2(-9)$ $= c^2 + 18$ (b) $\alpha^2 + \beta^2 - c^2 = 85 - (\alpha^2 + \beta^2)$ $c^2 + 18 - c^2 = 85 - (c^2 + 18)$ $c^2 = 49$ Note that the 1st term and the common difference of the sequence are 49 and 18 respectively. $\frac{n}{2}(2(49) + 18(n - 1)) > 2 \times 10^6$ $9n^2 + 40n - 2 \times 10^6 > 0$ $n < \frac{-40 - \sqrt{40^2 - 4(9)(-2 \times 10^6)}}{2(9)} \text{ or } n > \frac{-40 + \sqrt{40^2 - 4(9)(-2 \times 10^6)}}{2(9)}$ $1M$ $1M$ $1M$ $1M$ $1M$ $1M$ $1M$ $1M$	17.	(a)	Note that $\alpha + \beta = -c$ and $\alpha\beta = -9$.		
$=(-c)^2-2(-9)$ $=c^2+18$ 1A(3) (b) $\alpha^2+\beta^2-c^2=85-(\alpha^2+\beta^2)$ $c^2+18-c^2=85-(c^2+18)$ $c^2=49$ Note that the 1st term and the common difference of the sequence are 49 and 18 respectively. $\frac{n}{2}(2(49)+18(n-1))>2\times10^6$ $9n^2+40n-2\times10^6>0$ $n<-40-\sqrt{40^2-4(9)(-2\times10^6)}$ $n<-473.6319808$ or $n>469.1875364$ Thus, the least value of n is 470. 1A(4)			•		
$=c^2+18$ (b) $a^2+\beta^2-c^2=85-(a^2+\beta^2)$ $c^2+18-c^2=85-(a^2+18)$ $c^2=49$ Note that the 1st term and the common difference of the sequence are 49 and 18 respectively. $\frac{n}{2}(2(49)+18(n-1))>2\times10^6$ $9n^2+40n-2\times10^6>0$ $n<-40-\sqrt{40^2-4(9)(-2\times10^6)}$ $2(9)$ $n<-473.6319808 or n>469.1875364 Thus, the least value of n is 470 . 1A$				1M	
(b) $\alpha^2 + \beta^2 - c^2 = 85 - (\alpha^2 + \beta^2)$ $c^2 + 18 - c^2 = 85 - (c^2 + 18)$ $c^2 = 49$ Note that the 1st term and the common difference of the sequence are 49 and 18 respectively. $\frac{n}{2}(2(49) + 18(n - 1)) > 2 \times 10^6$ $9n^2 + 40n - 2 \times 10^6 > 0$ $n < \frac{-40 - \sqrt{40^2 - 4(9)(-2 \times 10^6)}}{2(9)}$ or $n > \frac{-40 + \sqrt{40^2 - 4(9)(-2 \times 10^6)}}{2(9)}$ $n < -473.6319808$ or $n > 469.1875364$ Thus, the least value of n is 470. 1M 1M 1M 1M 1M					
(b) $\alpha^2 + \beta^2 - c^2 = 85 - (\alpha^2 + \beta^2)$ $c^3 + 18 - c^2 = 85 - (c^2 + 18)$ $c^2 = 49$ Note that the 1st term and the common difference of the sequence are 49 and 18 respectively. $\frac{n}{2}(2(49) + 18(n - 1)) > 2 \times 10^6$ $9n^2 + 40n - 2 \times 10^6 > 0$ $n < \frac{-40 - \sqrt{40^2 - 4(9)(-2 \times 10^6)}}{2(9)}$ or $n > \frac{-40 + \sqrt{40^2 - 4(9)(-2 \times 10^6)}}{2(9)}$ $1M$ $n < -473.6319808$ or $n > 469.1875364$ Thus, the least value of n is 470.			$=c^2+18$		
$c^2 + 18 - c^2 = 85 - (c^2 + 18)$ $c^2 = 49$ Note that the 1st term and the common difference of the sequence are 49 and 18 respectively. $\frac{n}{2}(2(49) + 18(n - 1)) > 2 \times 10^6$ $9n^2 + 40n - 2 \times 10^6 > 0$ $n < \frac{-40 - \sqrt{40^2 - 4(9)(-2 \times 10^6)}}{2(9)} \text{ or } n > \frac{-40 + \sqrt{40^2 - 4(9)(-2 \times 10^6)}}{2(9)}$ $1M$ $n < -473.6319808 \text{ or } n > 469.1875364$ Thus, the least value of n is 470.					
Note that the 1st term and the common difference of the sequence are 49 and 18 respectively. $\frac{n}{2}(2(49) + 18(n-1)) > 2 \times 10^6$ $9n^2 + 40n - 2 \times 10^6 > 0$ $n < \frac{-40 - \sqrt{40^2 - 4(9)(-2 \times 10^6)}}{2(9)}$ or $n > \frac{-40 + \sqrt{40^2 - 4(9)(-2 \times 10^6)}}{2(9)}$ $1M$ $1M$ $1N$ $1N$ Thus, the least value of n is 470 .		(b)		1M	
Note that the 1st term and the common difference of the sequence are 49 and 18 respectively. $\frac{n}{2}(2(49)+18(n-1))>2\times10^6$ $9n^2+40n-2\times10^6>0$ $n<\frac{-40-\sqrt{40^2-4(9)(-2\times10^6)}}{2(9)} \text{ or } n>\frac{-40+\sqrt{40^2-4(9)(-2\times10^6)}}{2(9)}$ $1M$ $1A$ (4)					
and 18 respectively. $\frac{n}{2}(2(49)+18(n-1))>2\times10^6$ $9n^2+40n-2\times10^6>0$ $n<\frac{-40-\sqrt{40^2-4(9)(-2\times10^6)}}{2(9)}$ or $n>\frac{-40+\sqrt{40^2-4(9)(-2\times10^6)}}{2(9)}$ $1M$ $1M$ $1A$ (4)			$c^2 = 49$		
$9n^{2}+40n-2\times10^{6}>0$ $n<\frac{-40-\sqrt{40^{2}-4(9)(-2\times10^{6})}}{2(9)} \text{ or } n>\frac{-40+\sqrt{40^{2}-4(9)(-2\times10^{6})}}{2(9)}$ $n<-473.6319808 \text{ or } n>469.1875364$ Thus, the least value of n is 470 .					
$9n^{2}+40n-2\times10^{6}>0$ $n<\frac{-40-\sqrt{40^{2}-4(9)(-2\times10^{6})}}{2(9)} \text{ or } n>\frac{-40+\sqrt{40^{2}-4(9)(-2\times10^{6})}}{2(9)}$ $n<-473.6319808 \text{ or } n>469.1875364$ Thus, the least value of n is 470 .			$\frac{n}{2}(2(49)+18(n-1))>2\times10^6$	1M	
n<-473.6319808 or n>469.1875364 Thus, the least value of n is 470. 1A(4)			-		
n<-473.6319808 or n>469.1875364 Thus, the least value of n is 470. 1A(4)			$n < \frac{-40 - \sqrt{40^2 - 4(9)(-2 \times 10^6)}}{2(9)}$ or $n > \frac{-40 + \sqrt{40^2 - 4(9)(-2 \times 10^6)}}{2(9)}$	1M	
			n < -473.6319808 or $n > 469.1875364$		
			Thus, the least value of n is 470.		
2022-DSE-MATH-CP 1–11				(.)	
2022-DSE-MATH-CP 1–11					
2022-DSE-MATH-CP 1–11					
2022-DSE-MATH-CP 1–11					
2022-DSE-MATH-CP 1–11					
2022-DSE-MATH-CP 1–11					
2022-DSE-MATH-CP 1–11					
2022-DSE-MATH-CP 1–11					
2022-DSE-MATH-CP 1–11					
2022-DSE-MATH-CP 1–11					
2022-DSE-MATH-CP 1–11					
2022-DSE-MATH-CP 1–11					
2022-DSE-MATH-CP 1–11					
2022-DSE-MATH-CP 1–11					
2022-DSE-MATH-CP 1–11					
2022-DSE-MATH-CP 1–11					
2022-DSE-MATH-CP 1–11					
2022-DSE-MATH-CP 1–11					
2022-DSE-MATH-CP 1–11					
2022-DSE-MATH-CP 1–11					
2022-DSE-MATH-CP 1–11					
	2022	-DSE	-MATH-CP 1–11		

Solution	Marks	Remarks
8. (a) (i) $QR^2 = PQ^2 + PR^2 - 2(PQ)(PR)\cos \angle QPR$ $QR^2 = 30^2 + 25^2 - 2(30)(25)\cos 95^\circ$ $QR \approx 40.69070673$	1M	
$QR \approx 40.7 \text{ cm}$ Thus, the length of QR is 40.7 cm .	1A .	r.t. 40.7 cm
(ii) $\frac{\sin \angle PQR}{PR} = \frac{\sin \angle QPR}{QR}$ $\frac{\sin \angle PQR}{25} \approx \frac{\sin 95^{\circ}}{40.69070673}$	1M	
$\angle PQR \approx 37.73809375^{\circ}$ or $\angle PQR \approx 142.2619063^{\circ}$ (rejected) Thus, we have $\angle PQR \approx 37.7^{\circ}$.	1A (4)	r.t. 37.7°
(b) $PM^2 = PQ^2 + QM^2 - 2(PQ)(QM)\cos \angle PQR$ $PM^2 \approx 30^2 + \left(\frac{40.69070673}{2}\right)^2 - 2(30)\left(\frac{40.69070673}{2}\right)\cos 37.73809375^\circ$		
$PM \approx 18.66993831 \mathrm{cm}$ Let D and N be the projections of R and M on the horizontal ground		
respectively. MN		
$= \frac{1}{2}RD$ $= \frac{1}{2}PR\sin 70^{\circ}$	1M	
$= \frac{1}{2} PR \sin 70^{\circ}$ $= \frac{1}{2} (25) \sin 70^{\circ}$ $\approx 11.74615776 \text{ cm}$		
Note that the angle between PM and the horizontal ground is $\angle MPN$. $\sin \angle MPN = \frac{MN}{PM}$	1M	
$\sin \angle MPN \approx \frac{11.74615776}{18.66993831}$ $\angle MPN \approx 38.98730493^{\circ}$ $\angle MPN < 40^{\circ}$		
Thus, the claim is not correct.	1A (3)	f.t.
022-DSE-MATH-CP 1–12		

機密 (只限閱卷員使用)

CONFIDENTIAL (FOR MARKER'S USE ONLY)

	Solution	Marks	Remarks
9. (a)	The slope of AG = $\frac{112 - 12}{83 - 158}$		
	$=\frac{-4}{3}$		
	The required equation is		
	$y-12=\frac{-4}{3}(x-158)$	1M	
	4x + 3y - 668 = 0	1A	or equivalent
		(2)	1
(b)	The radius of C is 75.		
	Since $83 + 75 = 158$, AP is vertical or AQ is vertical.	13.6	
	So, the coordinates of P or the coordinates of Q are (158, 112).	1M	
	Note that $\triangle AGP \cong \triangle AGQ$ and $AG \perp PQ$.		
	Hence, the slope of PQ is $\frac{3}{4}$.		
	The equation of <i>PQ</i> is $y - 112 = \frac{3}{4}(x - 158)$.		
	Solving $y-112 = \frac{3}{4}(x-158)$ and $4x+3y-668 = 0$, we have	1M	7 A**
	x = 110 and $y = 76$.		,
	Thus, the coordinates of the point of intersection of AG and PQ are $(110, 76)$.	1A (3)	
(c)	Let I and r be the centre and the radius of the inscribed circle of $\triangle APQ$ respectively.		
	Note that $AP = AQ$ and I lies on AG .		
	The x -coordinate of I		2
	=158-r	1M	accept $110 + \frac{3r}{5}$
	The y -coordinate of I		
	$=\frac{-4}{3}(158-r)+\frac{668}{3}$		
	$=\frac{4r}{3}+12$		
	So, the coordinates of I are $\left(158-r, \frac{4r}{3}+12\right)$.		
	The distance between I and the point of intersection of AG and PQ is r .		
	$((158-r)-110)^2 + \left(\left(\frac{4r}{3}+12\right)-76\right)^2 = r^2$	1M	accept $158 - r = 110 + \frac{3r}{5}$
	$\frac{16}{9}r^2 - \frac{800}{3}r + 6400 = 0$		
	$r^2 - 150r + 3600 = 0$		
	r = 30 or $r = 120$ (rejected)	1M	
	Therefore, we have $r = 30$.		
	Hence, the coordinates of I are $(128, 52)$. Thus, the required equation is $(x-128)^2 + (y-52)^2 = 30^2$.	1A	$x^2 + y^2 - 256x - 104y + 19199 -$
	Thus, the required equation is $(x-120) + (y-32) = 30$.	(4)	$x^2 + y^2 - 256x - 104y + 18188 =$
22-DS	E-MATH-CP 1–13		

Solution	Marks	Remarks
(d) Note that $\angle APG = \angle AQG = 90^\circ$ and $\angle APG + \angle AQG = 180^\circ$. So, $APGQ$ is a cyclic quadrilateral and AG is a diameter of the circumcircle of $\triangle APQ$. The radius of the circumcircle of $\triangle APQ$ $= \frac{1}{2} \sqrt{(83-158)^2 + (112-12)^2}$ $= \frac{125}{2}$	1M	
By (c), the radius of the inscribed circle of ΔAPQ is 30.		
The ratio of the area of the inscribed circle to the area of the circumcircle of ΔAPQ		
$= 30^{2} : \left(\frac{125}{2}\right)^{2}$ $= 144 : 625$	1M	
≠ 1:4 Thus, the claim is disagreed.	1A (3)	f.t.
	,	
DSE-MATH-CP 1–14		