| SEC | | A (50 marks) | | | |-----|------------|--|--|--------------| | 1. | Let where | A and B be two events. Suppose that $P(A) = 0.8$, $P(B A) = 0.4$
A is the complementary event of A. Find | 5 and | P(B A')=0.6, | | | (a) | P(B), | | | | | (b) | P(A B), | | | | | (c) | $P(A \cup B)$. | | (5 marks) | ······································ | M.F. | *** | is (0. | estate, 1 confidence interval for p of nouseholds who keep pets. He conducts a survey andom sample of 64 households and finds that an approximate $\beta\%$ confidence interval for p .0915, 0.3085). | |--------|---| | (a) | Find | | | (i) the sample proportion of households who keep pets, | | | (ii) β . | | (b) | Using the sample proportion obtained in (a)(i), find the least number of households such that the probability of at least 1 of these households who keeps pets is greater than 0.999. (6 marks | | ٠ | | | | | | | | | | | | _ | | | | | | | | | _ | | | _ | | | _ | | | _ | | | - | | | - | | | | | | | | | | | riease stick the barcode label here. ## Please stick the barcode label here. | | he help shows the probability distribution of a discrete | _ | - | | | | _ | |----|--|---|---|-------|----|-----|---| | | The table below shows the probability distribution of a discrete random variable | Y | | where | m | and | 1 | | 1. | are constants: | | • | | "" | und | ı | | | ST - | | | | | | | | У | -2 | 2 | m | |--------|----|------|-----| | P(Y=y) | p | 0.25 | 0.5 | - (a) Prove that $Var(Y) = 0.25 m^2 + 2$. - (b) If Var(2Y-1) = 8E(2Y-1), find m. (7 marks) | | | | 9 | | |---|---|--|-------------|--| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | (*) | | | | | | | | and the state of | OCCUPANTAL POR LANGUAGE AND MICHIEVA CONTRACTOR | ************************************** | | | | | | | | | | ng an ang alam ang | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | ······································ | Please stick the barcode label here. | _ | | | |------------|--|---| | Let k | be a constant. | | | (a) | Expand $e^{kx} + e^{2x}$ in ascending powers of x as far as the term in x^2 | | | (b) | If the coefficient of x and the coefficient of x^2 in the expansion of $(1-3x)^8(e^{kx}+e^{2x}-1)$ are equal, find k . | | | | (6 marks) | | | _ | | | | | | | | | | A newers written in the margins will not be marked. | | | | not be n | | | | ı lliw sı | | | | margir | | | | in the | | | | - writte | | | | - \ | | | | - ` | | | | - | | | | - | | | | _ | | - | | | | | | | | - | | | | | | | | _ | | | | 7. L | et h be a constant. Consider the curve $C: y = x^2 \sqrt{h-x}$, where $0 < x < h$ at $\frac{dy}{dx} = 30$ when $x = 4$. | · It is gi | |------------|---|------------| | (a)
(b) | Prove that $h = 20$. Find the maximum point(s) of C . | | | (c) | Write down the equation(s) of the horizontal tangent(s) to C . | (7 mark | _ | | 8. | (a) | By considering $\frac{d}{dx}(x \ln x)$, find $\int \ln x dx$. | |----|------------|---| | | (b) | Find $\int \frac{\ln x}{x} dx$. | | | (c) | Let C be the curve $y = \frac{(x-1)(\ln x - 1)}{x}$, where $x > 0$. Express, in terms of e, the area of | | _ | | (7 marks) | | - | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | · | | | | | | | | | SECTION B (50 marks) Answers written in the marries will | 11. | In a r | esearch, the rate of change of the distance (in cm/s) travelled by a particle is given by | |-----|--------|--| | | | $A(t) = 60(1+10t)e^{-2t} ,$ | | | travel | t is the number of seconds elapsed since the start of the research. Let D cm be the distance ed by the particle from $t=0.1$ to $t=0.5$. Denote the estimate of D by using the trapezoidal ith 4 sub-intervals by D_1 . | | | (a) | (i) Find D_1 . | | | | (ii) Is D_1 an over-estimate or an under-estimate? Explain your answer. (6 marks) | | | (b) | In order to estimate D , a researcher, Mary, models the rate of change of the distance travelled by the particle by | | | | $B(t) = \frac{50(1+10t)}{1+2t} ,$ | | | | where t is the number of seconds elapsed since the start of the research. Let D_2 cm be the distance travelled by the particle from $t = 0.1$ to $t = 0.5$ under this model. | | | | (i) Find D_2 . | | | | (ii) Mary claims that in order to estimate D , D_2 is more accurate than D_1 . Do you agree? Explain your answer. | | | | (6 marks) | 12. In an e | experiment, the number of certain bacteria in a room under control rature Q (in °C) in the room can be modelled by the following lin $Q = \ln r + (s \ln 3)t$, | lled conditions is recon | |------------------------------|---|--| | | $Q = \ln r + (s \ln 3)t ,$ | runction scorded. Th | | where
experim
function | r and s are constants and t ($0 \le t \le 20$) is the number of houndent. It is given that the slope and the intercept on the vertical at of t are $-0.1 \ln 9$ and $\ln 9$ respectively. | rs elapsed since the start of the uxis of the graph of this to | | | Find r and s . | Inear | | (b) It | t is given that | (2 marks) | | | $Q = \ln\left(\frac{120 - 3N}{N}\right),$ | , | | wh | here N is the number in millions of bacteria. | | | (i) | | | | (ii) | Is it possible that there are 4 million bacteria in the room duri | ng the experiment? Explain | | (iii) | Jar .1 | 1 | | (iv) | Describe how $\frac{dN}{dt}$ varies during the experiment. Explain you | r answer. | | | | (11 marks) | | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | · | | | | | | | | | | | | | |