香港考試及評核局 HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY

2022年香港中學文憑考試 HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2022

製學 延伸部分 單元ー(微積分與統計) MATHEMATICS EXTENDED PART MODULE 1 (CALCULUS AND STATISTICS)

評卷參考 MARKING SCHEME

本評卷參考乃香港考試及評核局專為今年本科考試而編寫,供閱卷員參考之用。 本評卷參考之使用,均受制於閱卷員有關之服務合約條款及閱卷員指引。特別 是:

- 本局擁有並保留本評卷參考的所有財產權利(包括知識產權)。在未獲本局之書面批准下,閱卷員均不得複製、發表、透露、提供、使用或經營本評卷參考之全部或其部份。在遵守上述條款之情況下,本局有限地容許閱卷員可在應屆香港中學文憑考試的考試成績公布後,將本評卷參考提供任教本科的教師參閱。
- 在任何情況下,均不得容許本評卷參考之全部或其部份落入學生手中。本局籲請各閱卷員/教師通力合作,堅守上述原則。

This marking scheme has been prepared by the Hong Kong Examinations and Assessment Authority for the reference of markers. The use of this marking scheme is subject to the relevant service agreement terms and Instructions to Markers. In particular:

- The Authority retains all proprietary rights (including intellectual property rights) in this marking scheme. This marking scheme, whether in whole or in part, must not be copied, published, disclosed, made available, used or dealt in without the prior written approval of the Authority. Subject to compliance with the foregoing, a limited permission is granted to markers to share this marking scheme, after release of examination results of the current HKDSE examination, with teachers who are teaching the same subject.
- Under no circumstances should students be given access to this marking scheme or any part of it. The Authority is counting on the co-operation of markers/teachers in this regard.

◎香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved

Hong Kong Diploma of Secondary Education Examination Mathematics Extended Part Module 1 (Calculus and Statistics)

General Marking Instructions

- 1. It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates will have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct answer merits *all the marks* allocated to that part, unless a particular method has been specified in the question. Markers should be patient in marking alternative solutions not specified in the marking scheme.
- 2. In the marking scheme, marks are classified into the following three categories:

'M' marks awarded for correct methods being used; 'A' marks awarded for the accuracy of the answers;

Marks without 'M' or 'A' awarded for correctly completing a proof or arriving

at an answer given in a question.

In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous. However, 'A' marks for the corresponding answers should NOT be awarded (unless otherwise specified).

- 3. For the convenience of markers, the marking scheme was written as detailed as possible. However, it is still likely that candidates would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, markers should exercise their discretion in marking candidates' work. In general, marks for a certain step should be awarded if candidates' solution indicated that the relevant concept/technique had been used.
- 4. In marking candidates' work, the benefit of doubt should be given in the candidates' favour.
- 5. In the marking scheme, 'r.t.' stands for 'accepting answers which can be rounded off to' and 'f.t.' stands for 'follow through'. Steps which can be skipped are shaded whereas alternative answers are enclosed with rectangles.
- 6. Unless otherwise specified in the question, numerical answers should either be exact or given to 4 decimal places. Answers not accurate up to the required degree of accuracy should not be accepted.

	Solution	Marks	Remarks
1. (a)	0.1 + a + b = 1 a + b = 0.9	1M	
	E(X) = 4.6 4a + 6b = 4.6 2a + 3b = 2.3	1M	
	Solving, we have $a = 0.4$ and $b = 0.5$.	1A	for both correct
	$Var(X)$ = $(4^2)(0.4) + (6^2)(0.5) - 4.6^2$ = 3.24	1A	
(b)	By central limit theorem, $\overline{X} \sim N \left(4.6, \left(\frac{\sqrt{3.24}}{\sqrt{225}} \right)^2 \right)$, i.e. $N(4.6, 0.12^2)$.	1M	can be absorbed
	The required probability $\approx P\left(Z > \frac{4.75 - 4.6}{0.12}\right)$	1M	
	(0.12) = 0.1056	1A	
		(7)	
2. (a)	$ \begin{aligned} &\operatorname{Var}(X) \\ &= \frac{\operatorname{Var}(Y)}{4^2} \end{aligned} $	1M	1
	4^2	1A	¦ either one
	E(Y) = 200 - 4E(X) = 164.8	1A	
(b)	E(Y) = 164.8 \neq 144 = $Var(Y)$		
	Since $E(Y) \neq Var(Y)$, it is not possible that Y follows a Poisson distribution.	1A	f.t.
(c)	Assume that $X \sim B(n, p)$. $E(X) = np$ and $Var(X) = np(1 - p)$.		
	Var(X) = (1 - p)E(X) 9 = (1 - p)8.8		
	$p = \frac{-1}{44} < 0$		
	Thus, it is not possible that X follows a binomial distribution.	1A (5)	f.t.
2022-DSI	E-MATH-EP(M1)–3		

		Solution	Marks	Remarks
3.	(a)	$P(A' B) = 5P(A B)$ $\frac{P(A' \cap B)}{P(B)} = 5\left(\frac{P(A \cap B)}{P(B)}\right)$ $P(A' \cap B) = 5P(A \cap B)$	1 M	
		$P(A \cap B) + P(A' \cap B) = p$	1M	
		$P(A \cap B) + 5P(A \cap B) = p$ $P(A \cap B) = \frac{p}{6}$		either one
		$P(A)$ $= P(A \cap B) + P(A \cap B')$ $= P(A \cap B) + P(A \cap B) + 0.45$ $= \frac{p}{3} + 0.45$	1	
	(b)	Assume that A and B are independent. $P(A \cap B) = P(A)P(B)$:	
		$\frac{p}{6} = \left(\frac{p}{3} + 0.45\right)p$ $2p + 2.7 = 1 \qquad \text{(since } p \neq 0\text{)}$	1M	
		p = -0.85 < 0 Thus, A and B are not independent.	1A	f.t.
	(c)	P(A) + P(C)		
		$=\frac{p}{3}+0.45+0.6$		
		$=1.05+\frac{p}{3}$		
		$ > 1 $ $ \ge P(A \cup C) $	1M	
		Thus, A and C are not mutually exclusive.	1A	f.t.
		$P(A \cap C)$ = P(A) + P(C) - P(A \cup C)		
		$= P(A) + P(C) - P(A \cup C)$ $= \frac{p}{3} + 0.45 + 0.6 - P(A \cup C)$ $\geq \frac{p}{3} + 0.05 \qquad (P(A \cup C) \leq 1)$		
		$\neq 0$ Thus, A and C are not mutually exclusive.	1M 1A	f.t.
		Thus, A and C are not mutuarly exclusive.	(7)	<u> </u>
202	22-DSE	E-MATH-EP(M1)–4		

Solution	Marks	Remarks
4. (a) A 95% confidence interval for μ $= \left(\frac{150}{100} - 1.96 \left(\frac{0.4}{\sqrt{100}}\right), \frac{150}{100} + 1.96 \left(\frac{0.4}{\sqrt{100}}\right)\right)$ $= (1.4216, 1.5784)$	1M+1A 1A	
(b) Let <i>n</i> be the number of students. The width of the new confidence interval = $(2)(1.96)\left(\frac{0.4}{\sqrt{n}}\right)$	1M	
When $n < 100$, we have $\frac{0.4}{\sqrt{n}} > \frac{0.4}{\sqrt{100}}$. Thus, the width of the new confidence interval is greater.	1A (5)	f.t.
5. (a) $e^{\frac{-kx}{2}}$ = $1 + \left(\frac{-kx}{2}\right) + \frac{1}{2!}\left(\frac{-kx}{2}\right)^2 + \cdots$	1M	
$=1-\frac{k}{2}x+\frac{k^2}{8}x^2+\cdots$	1A	
(b) (i) $y = 64e^{-kx}$ $\ln y = -kx + \ln 64$	1A	
(ii) $\sqrt{y}(1-2x)^5$ $= 8e^{\frac{-kx}{2}}(1-2x)^5$ $= 8\left(1-\frac{k}{2}x+\frac{k^2}{8}x^2+\cdots\right)\left(1+C_1^5(-2x)+C_2^5(-2x)^2+\cdots+(-2x)^5\right)$ $= 8\left(1-\frac{k}{2}x+\frac{k^2}{8}x^2+\cdots\right)\left(1-10x+40x^2+\cdots-32x^5\right)$	1M	for binomial expansion
$8\left(1)(40) + \left(-\frac{k}{2}\right)(-10) + \left(\frac{k^2}{8}\right)(1)\right) = 449$ $320 + 40k + k^2 = 449$ $k^2 + 40k - 129 = 0$	1M	
k=3 or $k=-43$ (rejected) Thus, the slope of the graph of the linear function in (b)(i) is -3 .	1A (6)	·
2022-DSE-MATH-EP(M1)5		

Solution	Marks	Remarks
(a) $\frac{dy}{dx}$		
$=\frac{(6+2x^2)(-8x)-(9-4x^2)(4x)}{(6+2x^2)^2}$	1M	
$=\frac{-21x}{(3+x^2)^2}$	1A	
(h) Let he the recordinate of the point of contact. So we have		
(b) Let h be the x-coordinate of the point of contact. So, we have $\frac{-21h}{(3+h^2)^2} = \frac{9-4h^2}{6+2h^2} + 2$ $h-3$	1M+1M	
$-21h(h-3) = \frac{9-4h^2+12+4h^2}{2(3+h^2)}(3+h^2)^2$		
$-21h(h-3) = \frac{21}{2}(3+h^2)$		
$h^2 - 2h + 1 = 0$ $h = 1$	1M	
The equation of L is $y + 2 = \frac{-21(1)}{(3+(1)^2)^2}(x-3)$	1M	·
$y+2=\frac{-21}{16}(x-3)$		
21x + 16y - 31 = 0	1A (7)	
022-DSE-MATH-EP(M1)-6		

	Solution	Marks	Remarks
'. (a)	$g'(9) = 2g'(4)$ $9^{\beta}3^{\sqrt{9}} = (2)(4^{\beta})(3^{\sqrt{4}})$ $\frac{9^{\beta}}{4^{\beta}} = \frac{2}{3}$		
	$\left(\frac{3}{2}\right)^{2\beta} = \left(\frac{3}{2}\right)^{-1}$ $\beta = \frac{-1}{2}$	1	
(b)	Let $u = \sqrt{x}$.	1M	
	So, we have $\frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}}$. $g(x)$ $= \int x^{-\frac{1}{2}} 3^{\sqrt{x}} dx$		·
	$= 2 \int 3^{\sqrt{x}} \left(\frac{1}{2} x^{\frac{-1}{2}} \right) dx$ $= 2 \int 3^{u} du$	1M	
	$= 2\left(\frac{3^{u}}{\ln 3}\right) + C$ $= \frac{2}{\ln 3}3^{\sqrt{x}} + C, \text{ where } C \text{ is a constant}$	1M	
	$g(4) = 0$ $\frac{2}{\ln 3} 3^{\sqrt{4}} + C = 0$ $C = \frac{-18}{\ln 3}$	1M	
	$g(x) = \frac{2}{\ln 3} 3^{\sqrt{x}} - \frac{18}{\ln 3}$		
	$g(9) = \frac{2}{\ln 3} 3^{\sqrt{9}} - \frac{18}{\ln 3} = \frac{36}{\ln 3}$	1A	·
.022-DS	E-MATH-EP(M1)–7		

Solution	Marks	Remarks
g(9)		
$\int_4^9 g'(x) dx + g(4)$	1M	
$=\int_4^9 g'(x) dx$		
$= \int_4^9 g'(x) dx + g(4)$ $= \int_4^9 g'(x) dx$ $= \int_4^9 x^{-\frac{1}{2}} 3^{\sqrt{x}} dx$		
Let $u = \sqrt{x}$. So, we have $\frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}}$.	1M	
So, we have $\frac{1}{dx} = \frac{1}{2}x^2$.	·	į
g(9)		
$= \int_4^3 x^2 3^{\sqrt{x}} \mathrm{d}x$		
$= \int_{4}^{9} x^{\frac{-1}{2}} 3^{\sqrt{x}} dx$ $= 2 \int_{4}^{9} 3^{\sqrt{x}} \left(\frac{1}{2} x^{\frac{-1}{2}} \right) dx$		
$\int_{-2}^{3} \int_{0}^{3} du du$	1M	
$=2\int_{2}^{3}3^{u}\mathrm{d}u$ $\begin{bmatrix} 3^{u} \end{bmatrix}^{3}$		
$=2\left[\frac{3^{u}}{\ln 3}\right]_{2}^{3}$	1M	
$=\frac{36}{\ln 3}$	1A	
	(6)	
2022 DGE MATH ED/MI) C		
2022-DSE-MATH-EP(M1)–8		

Solution								Marks	Remarks
	(a) $f'(x) = 8ax^7 - 760x^4 - 8640x$ f'(0) = 0								
	f''(0) =	-8640 < 0	$40x^3 - 8640$ its maximum	value at	x=0.			1	
(b) ((i) f'(- 8a(a =	$(-2)^7 - 760$	(-2) ⁴ -8640(-2) = 0				1	
(ii) $f'(x) = 0$ $40x^7 - 760x^4 - 8640x = 0$ $x(x^6 - 19x^3 - 216) = 0$ $x(x^3 - 27)(x^3 + 8) = 0$									
		= 0 , $x = 3$				·		1M	
	<i>x</i> < -2	x = -2	-2 < x < 0	x = 0	0 < x < 3	x = 3	x > 3	13.4	for tooting
$\frac{f'(x)}{f(x)}$	- -	0 -11136	7	0	- -	0 43011	+ 7	1M 1M	for testing
	Thu	as, the least	value of f(x	r) is –43	3011 .			1A (7)	·
022-DSE-1	MATH-E	P(M1)-9							

_			Solution	Marks	Remarks
9.	(a)	= (0	ne required probability .5)(0.3085) + (0.5)(0.1587) 2336	1A (1)	
	(b)		ne required probability 0.5)(0.3085) 0.2336 085 672	1M	r.t. 0.6603
	(c)	(i)	The required probability $= \frac{e^{-2.1}(2.1^2)}{2!}(0.2336^2)$	(2) 1M	
			≈ 0.014734515 ≈ 0.0147	1A	r.t. 0.0147
		(ii)	The required probability $= \frac{e^{-2.1}(2.1^{1})}{1!}(0.5)(0.3085) + \frac{e^{-2.1}(2.1^{2})}{2!}(2)(0.5)(0.3085)(0.5)(0.1587)(0.1$	7) ²) 1M+1M	
			≈ 0.234593001 ≈ 0.2346	1A	r.t. 0.2346
			The required probability $= \frac{e^{-2.1}(2.1^{1})}{1!}(0.2336)\left(\frac{3085}{4672}\right) + \frac{e^{-2.1}(2.1^{2})}{2!}(2)(0.2336)\left(\frac{3085}{4672}\right)(0.236)\left(\frac{3085}{$	$\frac{1}{360} \left(1 - \frac{3085}{4672}\right)$ 0.2336^{2}	$\left(\frac{5}{2}\right)$
			© 0.234593001	1M+1M	
		(iii)	≈ 0.2346 The required probability $= \frac{e^{-2.1}(2.1^{0})}{0!}(0.2336^{0}) + \frac{e^{-2.1}(2.1^{1})}{1!}(0.2336^{1}) + \frac{e^{-2.1}(2.1^{2})}{2!}(0.2336^{2})$	1A 2)+···	r.t. 0.2346
			$=\sum_{k=0}^{\infty} \frac{e^{-2.1}(2.1^k)}{k!} (0.2336^k)$	1M+1M	
			$= \sum_{k=0}^{\infty} \frac{e^{-2.1}(0.49056^{k})}{k!}$ $= \left(e^{-2.1}\right) \sum_{k=0}^{\infty} \frac{(0.49056^{k})}{k!}$		
			$= e^{-2.1}e^{0.49056}$ $= e^{-1.60944}$	1M	
			$\approx 0.199999582 < 0.2$ Thus, the claim is agreed.	1A (9)	f.t.
20	22-DS	E-MA	TH-EP(M1)–10		

<u></u>		Solution	Marks	Remarks
10 (a)	$=P\left($	certain athlete finishes the race in more than 12.1 seconds)	1M 1A (2)	
(b)	= (0.	required probability $554)^{8} + C_{1}^{8}(0.6554)^{7}(1-0.6554) + C_{2}^{8}(0.6554)^{6}(1-0.6554)^{2}$ 408	1M+1M 1A (3)	r.t. 0.4408
(c)	(i)	The required probability $= (0.6554)^{7}$ ≈ 0.051945156 ≈ 0.0519	1A	r.t. 0.0519
	(ii)	The required probability $= C_2^7 (0.6554)^5 (1 - 0.6554)^2$ ≈ 0.301565757 ≈ 0.3016	1M 1A	r.t. 0.3016
	(iii)	 P(Peter can proceed to the next stage Peter is the 3rd place in the group) = P(the 3rd place in at least 2 other groups finishes the race in more than 12.1 seconds) = P(at least 6 athletes finish the race in more than 12.1 seconds in at least 2 other groups) ≈ C₂⁵ (0.440775526)² (1-0.440775526)³ + C₃⁵ (0.440775526)³ (1-0.440775526)² + C₄⁵ (0.440775526)⁴ (1-0.440775526) + (0.440775526)⁵ ≈ 0.72976499 	1M+1M	
		≈ 0.7298 2) P(Peter is the 2nd place in the group) $= C_1^7 (0.6554)^6 (1 - 0.6554)$ ≈ 0.191184172	1A 1M	r.t. 0.7298
		The required probability $\approx 0.051945156 + 0.191184172 + (0.301565757)(0.72976499)$ ≈ 0.463201461 ≈ 0.4632	1M 1A (9)	r.t. 0.4632
2022-DS	E-MAT	-EP(M1)-11		

11. (a)	Let $g(x) = e^x \ln x$.		
	$\int_{1}^{2} e^{x} \ln x \mathrm{d}x$		
	$= \int_{1}^{2} g(x) dx$		
	$\approx \frac{1}{2} \left(\frac{2-1}{5} \right) (g(1) + g(2) + 2(g(1.2) + g(1.4) + g(1.6) + g(1.8)))$	1 M	
	≈ 2.082897622	1.4	
	≈ 2.0829	1A (2)	
	d		
(b)	$\frac{\mathrm{d}}{\mathrm{d}x}(xe^x\ln x)$		
	$= e^{x} \ln x + x \left(e^{x} \ln x + (e^{x}) \left(\frac{1}{x} \right) \right)$	1M	
	$= (x+1)e^x \ln x + e^x$		
	So, we have		
	$(x+1)e^{x} \ln x = \frac{\mathrm{d}}{\mathrm{d}x}(xe^{x} \ln x) - e^{x}$		
	$\int (x+1)e^x \ln x dx = xe^x \ln x - \int e^x dx$	1M	
	$\int (x+1)e^x \ln x dx = xe^x \ln x - e^x + \text{constant}$		
	$\int \left((x+1)e^x \ln x + \frac{1}{x} \right) dx$		
	$= xe^x \ln x - e^x + \int \frac{1}{x} dx$		
	$= xe^{x} \ln x - e^{x} + \ln x + \text{constant}$	1A	
	$= xe^{x} \ln x - e^{x} + \ln x + \text{constant}$	(3)	
(c)	(i) α		
	$= \int_{1} \left(xe^{x} \ln x + \frac{1}{x} \right) dx$	IM	
	$= \int_{1}^{2} \left((x+1)e^{x} \ln x + \frac{1}{x} \right) dx - \int_{1}^{2} e^{x} \ln x dx$	1M	
	$\approx \left[xe^{x} \ln x - e^{x} + \ln x \right]_{1}^{2} - 2.082897622$	1M	for using the results of (a) and (b)
	≈ 4.182882092 ≈ 4.1829	1 A	rt 4 1829
	1:1007	111	
	E-MATH-EP(M1)–12		
(6)	$= \int_{1}^{2} \left(x e^{x} \ln x + \frac{1}{x} \right) dx$ $= \int_{1}^{2} \left((x+1)e^{x} \ln x + \frac{1}{x} \right) dx - \int_{1}^{2} e^{x} \ln x dx$ $\approx \left[x e^{x} \ln x - e^{x} + \ln x \right]_{1}^{2} - 2.082897622$		for using the results of (a) and (b) r.t. 4.1829

Salution Scalution		-
Solution	Marks	Remarks
(ii) $\frac{\mathrm{d}}{\mathrm{d}x} \left(e^x \ln x \right) = e^x \ln x + (e^x) \left(\frac{1}{x} \right)$	1M	
$\frac{\mathrm{d}^2}{\mathrm{d}x^2} \left(e^x \ln x \right)$ $= e^x \ln x + (e^x) \left(\frac{1}{x} \right) + (e^x) \left(\frac{1}{x} \right) - (e^x) \left(\frac{1}{x^2} \right)$ $= e^x \left(\ln x + \frac{2x - 1}{x^2} \right)$	1 M	
Since $\frac{d^2}{dx^2}(e^x \ln x) > 0$ for $1 \le x \le 2$, the estimate of $\int_1^2 e^x \ln x dx$ is an over-estimate. Then, the estimate of α is an under-estimate. So, we have $\alpha > 4.18288 > 4$	1A	
Thus, the claim is agreed.	1A (8)	f.t.
	:	
2022-DSE-MATH-EP(M1)–13		

Solution	Marks	Remarks
12. (a) $\frac{du}{dt}$ $= -2e^{6-2t}$ $= -2u$	1A	
$\frac{dN}{dt}$ $= \frac{dN}{du} \frac{du}{dt}$ $= (-Ae^{-u})(-2u)$ $= 2Aue^{-u}$	1M 1A	for chain rule
(b) $\frac{d^2 N}{dt^2}$ $= \frac{d}{du} (2Aue^{-u}) \frac{du}{dt}$	(3)	
$du = \int dt$ $= (2Ae^{-u} - 2Aue^{-u})(-2u)$ $= N(4u^2 - 4u)$		1M for product rule
$\therefore p(u) = 4u^2 - 4u$	1A (2)	
(c) (i) When $\frac{d}{dt} \left(\frac{dN}{dt} \right) = 0$, we have $u = 1$ or $u = 0$ (rejected) $u = 1$	1M	
$e^{6-2t} = 1$ $t = 3$		
Thus, $t_0 = 3$. (ii) $t = 0 < t < 3$ $t = 3$ $t > 3$	1A	
$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}N}{\mathrm{d}t} \right)$ + 0 -	1M	for testing
Thus, the extreme value of $\frac{dN}{dt}$ is a maximum value.	1A (4)	f.t.
(d) Note that $\lim_{t \to \infty} u = \lim_{t \to \infty} e^{6-2t} = 0$.		
The estimated number of bugs found after a very long time $= \lim_{t \to \infty} N$ $\lim_{t \to \infty} A e^{-tt}$	1M	
$= \lim_{t \to \infty} A e^{-tt}$ $= A$	1A (2)	
2022-DSE-MATH-EP(M1)–14		