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Hong Kong Diploma of Secondary Education Examination
Mathematics Extended Part Module 1 (Calculus and Statistics)

General Marking Instructions

1. It is very important that all markers should adhere as closely as possible to the marking scheme. In many
cases, however, candidates will have obtained a correct answer by an alternative method not specified in the
marking scheme. In general, a correct answer merits all the marks allocated to that part, unless a particular
method has been specified in the question. Markers should be patient in marking alternative solutions not
specified in the marking scheme.

2. In the marking scheme, marks are classified into the following three categories:
‘M’ marks awarded for correct methods being used;
‘A’ marks awarded for the accuracy of the answers;
Marks without ‘M’ or ‘A’ awarded for correctly completing a proof or arriving

at an answer given in a question.

In a question consisting of several parts each depending on the previous parts, ‘M’ marks should be awarded
to steps or methods correctly deduced from previous answers, even if these answers are erroneous. However,
‘A’ marks for the corresponding answers should NOT be awarded (unless otherwise specified).

3. For the convenience of markers, the marking scheme was written as detailed as possible. However, it s still
likely that candidates would not present their solution in the same explicit manner, e.g. some steps would
either be omitted or stated implicitly. In such cases, markers should exercise their discretion in marking
candidates’ work. In general, marks for a certain step should be awarded if candidates’ solution indicated
that the relevant concept/technique had been used.

4. In marking candidates’ work, the benefit of doubt should be given in the candidates’ favour.

5. In the marking scheme, ‘r.t.” stands for ‘accepting answers which can be rounded off to” and ‘f.t.” stands for
‘follow through’. Steps which can be skipped are sh whereas alternative answers are enclosed with

kectangle.

6. Unless otherwise specified in the question, numerical answers should either be exact or given to 4 decimal
places. Answers not accurate up to the required degree of accuracy should not be accepted.
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Solution Marks Remarks
1. (@ 0l+a+b=1 1M
a+b=09
E(X)=4.6
4a+6b=4.6 1M
2a+3b=23
Solving, we have a=0.4 and 5=0.5. 1A for both correct
Var(X)
=(4%)(0.4) + (6°)(0.5) - 4.6
=324 1A
—\2
(b) By central limit theorem, X ~ N| 4.6, v3.24 , ie. N(4.6,0.122) ] 1M can be absorbed
4225
The required probability
~PlZ> A75-46 IM
0.12
=0.1056 1A
---------- @)
2. (@ Var(X)
_Yar) BV :
4 ‘
=9 1A either one
i
E(Y) o
=200 - 4E(X)
=164.8 1A
() EM
=164.8
# 144
= Var(Y)
Since E(Y) = Var(Y), it is not possible that ¥ follows a Poisson
distribution. 1A fit.
(¢) Assume that X~B(n,p). E(X)=#np and Var(X) =np(l —p).
Var(X) = (1 - p)E(X)
9=(1-p)8.8
-1
)
Thus, it is not possible that X follows a binomial distribution. 1A fit.
---------- 5)
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Solution Marks Remarks

3. (a) P(A'|B)=5P(4|B)
P(A’mB)zsLP(AmB)J M
P(B) P(B)
P(4' NB)=5P(4NB)

P(ANB)+P(A'NB)=p M |- :
P(ANB)+5P(ANB)=p i

P(ANB)= %
P(A)

=P(4nB)+P(4nBY e
=P(4ANB)+P(ANB)+0.45

=2 045 1
3

(b) Assumethat 4 and B are independent.
P(ANB) =P(A)P(B)

£ Lﬁ +0.45 |p M
6 3
2p+27=1 (since p=0)
p=-0.85<0
Thus, A and B are not independent. 1A fit.

© P(4)+P(C)
=2 1045+06
3

=1.05+&
3

>1
>P(4UC) 1M

Thus, 4 and C are not mutually exclusive. 1A fit.

P(ANO)
=P(A)+P(C)-P(A4UC)

=§+0.45+0.6—P(AUC)

z§+o.05 (P(AUC)<1)
#0 1M

Thus, 4 and C are not mutually exclusive. 1A fit.
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Solution Marks Remarks
4. (a) A 95% confidence interval for u
= 15—-()-—1.96 94 ,@4—1.96 94 IM+1A
100 J100 /100 4100
=(1.4216 ,1.5784) 1A
(b) Let n be the number of students.
The width of the new confidence interval = (2)(1 .96)L%J M
n
When n <100, we have ﬂ>ﬂ .
Jn 100
Thus, the width of the new confidence interval is greater. 1A fit.
---------- 5)
—kx
5. (1) e?
2
=1+ kx + 1( -k IM
2 218 2
2
=l-—x+ Ll x%+ 1A
8
b)) () y=64e™
Iny=—kx+In64 1A
G)  Jya-20°
ke
=8¢ 2 (1-2x)°
2
= 8(1 - §x+ %xz 4o }(1 +C (-2x)+C5 (-2x)* +---+ (—2x)5) 1M for binomial expansion
2
=8(1—§x+%—x2 +---}(1—10x+40x2 +-.-—32x5)
k i
1)40) + ) (—10) + 3 (1) =449 M
320 +40k + k% =449
k* +40k—129 =0
k=3 or k=-43 (rejected)
Thus, the slope of the graph of the linear function in (b)(i) is -3 . 1A
---------- ©)
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Solution Marks Remarks
dy
6. (a e
(a) o
(64 2x%)(=8x) — (9 4x>)(4x) M
(6+2x%)?
_ —21x 1A
(3+x)?
(b) Let A be the x-coordinate of the point of contact. So, we have
2
o 9—4/12 49
- =S5+2h IM+1M
3B+r7) h-3
a2 2
—21h(h—3)=9 4h +127+4h (3+h2)2
23+ h7)
—21h(h—3)=%(3+h2)
W —2h+1=0
h=1 M
The equation of L is
=i(12)7 3) 1M
BG+M)
=21
+2=—-(x-3
y T (x-3)
2lx+16y-31=0 1A
---------- ™
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Solution Marks Remarks

7. @ g0O)=2g@)
973 — (2)4%)3"*)

(b) Let u=+/x . 1M
-1

So, we have 2l—=lx2 .

dx

g(x)

=Ix_713‘/;dx

= 2J' 34 dy 1M

3“

= lni33J; + C , where C is a constant

g®)=0

2370 M

In3

c-"18
n3

2.5 18
:—-3 _——_—
gN =13 n3

29
_2 5 _18

In3 In3
36

1A
In3
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Solution Marks Remarks
g9
9
=j g'(x) dx + g(4) M
4
9
- [ gmar
4
g !
=.[ x 23V gy
4
Let u =\/; . 1M
-
So, we have du _ lx 2,
2
)
-1
—J. x? 3‘/;dx
4
o a1
=2 j 3vx {lﬁ}ix
2
4
3
=21 3*du 1M
2
.13
In3 5
_36 1A
In3
--------- (6)
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Solution Marks Remarks
8. (a) f'(x)=8ax’—760x"—8640x
£(0)=0 M
£''(x) = 56ax® —3040x> — 8640
£''(0) = —8640 < 0
Thus, f(x) attains its maximum value at x=0. 1
® @ f'(2)=0
8a(-2)" —760(—2)* —8640(~2) =0
a=>5 1
() f'(x)=0
40x7 —760x* —8640x=0
x(x® —=19x3 -216)=0
x(x® =27)(x> +8)=0
x=0,x=3 or x=-2 1M
X x<-2 x=-2 | 2<x<0 | x= 0<x<3 x=3 x>3
f'(x) - 0 + 0 - 0 + M for testing
fx)| N -11136 2 0 N 43011 | 7 1M
Thus, the least value of f(x) is—-43011. 1A
---------- (7)
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Solution Marks Remarks
9. (a) The required probability
= (0.5)(0.3085) + (0.5)(0.1587)
=0.2336 1A
---------- (1)
b) The required probability
_ (0.5)(0.3085) 1M
0.2336
= % 1A r.t. 0.6603
---------- @
) @ The required probability
= —-2—(0 23362) M
~0.014734515
~(.0147 1A r.t. 0.0147
(i)  The required probability
-2.1 2.1
—%Q(O 5)(0.3085) +——ﬁ(2)(0 5)(0.3085)(0.5)(0.1587)
=T 21 21
—(()2—1)(0 2336 )+LI)(O 2336 )+——%(O 2336%)
- IM+1M
~0.234593001
= 0.2346 1A r.t. 0.2346
The required probability |
-2.1 o2 ’
——(2 ! )(0 2336)(3085 )+ @1’ )(2)(0 2336) 3085 (O 2336) 1 3085
4672 2! 4672
-2.1 -2.1 2.1
——(21—)(0 2336°) + —@(0.23361) + —(-21—)(0 23367)
IM+1M
~ 0.234593001
=~ (.2346 1A r.t. 0.2346
(ili)  The required probability
e21(2.19) 221 e21(2.12)
——(o 2336° )+————(0 2336 )+—2'—(0.23362)+---
IM+1M
© 21,4 1k
- > @) 0336
k!
k=0
~ i ¢ >1(0.49056")
Py k!
(211" (0.49056")
) e
_ 21049056 IM
— 160944
~(0.199999582 < 0.2
Thus, the claim is agreed. 1A fit.
---------- ©)
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Solution Marks Remarks

10 (a) P(a certain athlete finishes the race in more than 12.1 seconds)
- p( zZ> w) M
0.5
=P(Z >-0.4)
=10.6554 1A

(b) The required probability
= (0.6554)% + C?(0.6554)7 (1-0.6554) + C3(0.6554)° (1 0.6554)* IM+1M
~ 0.4408 1A r.t. 0.4408

() @) The required probability
=(0.6554)
~0.051945156
~0.0519 1A r.t. 0.0519

(ii)  The required probability
= C](0.6554)° (1-0.6554)* 1M
= 0301565757
~0.3016 1A | r.t.0.3016

(i) (1)  P(Peter can proceed to the next stage | Peter is the 3rd place
in the group)
=P(the 3rd place in at least 2 other groups finishes the race
in more than 12.1 seconds)
=P(at least 6 athletes finish the race in more than 12.1
seconds in at least 2 other groups)

~ C3 (0.440775526 )2 (1-0.440775526 ) +
C3 (0440775526 )* (1-0.440775526 )* + IM+1M

C; (0440775526 )* (1-0.440775526 ) + (0.440775526 )°
% 0.72976499
~0.7298 1A r.t. 0.7298

(2)  P(Peteris the 2nd place in the group)
= C/ (0.6554)°(1-0.6554) M
~0.191184172

The required probability
~0.051945156 +0.191184172 +(0.301565757 )(0.72976499 ) IM
~ 0463201461
=~ 0.4632 1A r.t. 0.4632
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Solution Marks Remarks

11. (a8 Let g(x)=e¢"lnx.
2
J. e Inxdx
1

= [[awax

. ; (2 1)<g<1) +8(2) +2(g(1.2) + g(1.4) + g(1.6) + g(1.8)) IM

22, 082897622
~2.0829 1A

) —dd; (xe* Inx)
=exlnx+x[exlnx+(ex)£lJJ M

X
=(x+1De" Inx+e”

So, we have

d
+)e”* Inx =—(xe" Inx)—e”
(x+De*Inx d’x(xe x)—e
J.(x+1)ex1nxdx=xexlnx—'|vexdx IM

j' (x+1De* In xdx = xe* In x—e” + constant

J L(x+1)ex Inx+ —I-de
x

1
=xe"Inx-e* +I—dx

x
=xe*Inx—e* +1n|x| + constant 1A

=xe* Inx—e” + Inx + constant

---------- ()
(¢) ( a
J‘ xe®Inx + M
1 2
(x+l)e Inx+— )dx—jl e* Inxdx M
x x ]2 .
=|re" Inx—e” +Inx[] —2.082897622 M for using the results of (a) and (b)
~4.182882092
~4.1829 1A r.t. 4.1829
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Solution Marks Remarks
.. d{, < of 1
i) —le"Inx)=e"lnx+(e’)| — M
(i) e inx) () <
2
4 (ex In x)
e
x w1 o1 xf 1
=e"Inx+(e") — |+(e)| — —(e)—2 M
x X x
= e"[lnx+ 2x2—1)
x
42 . 2
Since g(e’r In x) >0 for 1 <x<2, the estimate of J. e"Inxdx
1

is an over-estimate. 1A
Then, the estimate of « is an under-estimate. So, we have

a
>4.18288
>4
Thus, the claim is agreed. 1A fit.

---------- ®)
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Solution Marks Remarks
du
12. (a —_
(@ 3
— _266'—21 lA
=-2u
w
dr
_ N du
du dt
=(—Ade™ Y (-2u) M for chain rule
=2Aue™ 1A
---------- 3)
d’*N
b -
(b) 2
= —d-(2Aue"‘ )gu_
du dr
=(24e™ —2Aue ™ )(—2u) IM for product rule
= N(4u® — 4u)
sop(u) = 4u? — 4y 1A
---------- @)
(¢) (i) When %[%J =0 ,wehave u=1 or u=0 (rejected) M
u=1
52—
t=3
Thus, ©t=3. 1A
(i1) t 0<t<3 t=3 t>3
d(dN M for testing
—_ — + 0 —
de\ de
dv . .
Thus, the extreme value of ry is a maximum value. 1A fit.
t
---------- )
(d) Notethat limu =lme* =0 .
{0 t—>0
The estimated number of bugs found after a very long time
=Hm N M
t—c0
=lim Ae™”
1—w
=4 1A
---------- )
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