香港考試及評核局 HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY

香港中學文憑考試 HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION

練習卷 PRACTICE PAPER

數學 延伸部分單元一(微積分與統計)

MATHEMATICS Extended Part Module 1 (Calculus and Statistics)

評卷參考

MARKING SCHEME

本評卷參考乃香港考試及評核局專為本科練習卷而編寫,供教師和學生參考之用。學生不應將評卷參考視為標準答案,硬背死記,活剝生吞。這種學習態度,既無助學生改善學習,學懂應對及解難,亦有違考試着重理解能力與運用技巧之旨。

This marking scheme has been prepared by the Hong Kong Examinations and Assessment Authority for teachers' and students' reference. This marking scheme should NOT be regarded as a set of model answers. Our examinations emphasise the testing of understanding, the practical application of knowledge and the use of processing skills. Hence the use of model answers, or anything else which encourages rote memorisation, will not help students to improve their learning nor develop their abilities in addressing and solving problems.

⑥香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2012

PP-DSE-MATH-EP(M1)-1

只限教師參閱

FOR TEACHERS' USE ONLY

General Notes for Teachers on Marking

Adherence to marking scheme

- 1. This marking scheme has been updated, with revisions made after the scrutiny of actual samples of student performance in the practice papers. Teachers are strongly advised to conduct their own internal standardisation procedures before applying the marking schemes. After standardisation, teachers should adhere to the marking scheme to ensure a uniform standard of marking within the school.
- 2. It is very important that all teachers should adhere as closely as possible to the marking scheme. In many cases, however, students may have arrived at a correct answer by an alternative method not specified in the marking scheme. In general, a correct alternative solution merits all the marks allocated to that part, unless a particular method has been specified in the question. Teachers should be patient in marking alternative solutions not specified in the marking scheme.

Acceptance of alternative answers

- 3. For the convenience of teachers, the marking scheme was written as detailed as possible. However, it is likely that students would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, teachers should exercise their discretion in marking students' work. In general, marks for a certain step should be awarded if students' solution indicate that the relevant concept / technique has been used.
- 4. In marking students' work, the benefit of doubt should be given in students' favour.
- 5. Unless the form of the answer is specified in the question, alternative simplified forms of answers different from those in the marking scheme should be accepted if they are correct.
- 6. Unless otherwise specified in the question, use of notations different from those in the marking scheme should not be penalised.

Defining symbols used in the marking scheme

7. In the marking scheme, marks are classified into the following three categories:

'M' marks – awarded for applying correct methods 'A' marks – awarded for the accuracy of the answers

Marks without 'M' or 'A' – awarded for correctly completing a proof or arriving at an answer given in the question.

In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous. (I.e. Teachers should follow through students' work in awarding 'M' marks.) However, 'A' marks for the corresponding answers should <u>NOT</u> be awarded, unless otherwise specified.

8. In the marking scheme, steps which can be skipped are enclosed by dotted rectangles, whereas alternative answers are enclosed by solid rectangles.

Others

- 9. Marks may be deducted for poor presentation (pp), including wrong / no unit. Note the following points:
 - (a) At most deduct 1 mark for pp in each section.
 - (b) In any case, do not deduct any marks for pp in those steps where students could not score any marks.
- 10. (a) Unless otherwise specified in the question, numerical answers not given in exact values or 4 decimal places should not be accepted.
 - (b) Answers not accurate up to specified degree of accuracy should not be accepted. For answers with an excess degree of accuracy, deduct 1 mark for *pp*. In any case, do not deduct any marks for excess degree of accuracy in those steps where students could not score any marks.

PP-DSE-MATH-EP(M1)-2

只限教師參閱

FOR TEACHERS' USE ONLY

		ス PR	OOL OI	· - ·
		Solution	Marks	Remarks
1.	(a)	$(2x+1)^3 = 8x^3 + 12x^2 + 6x + 1$	1A	
	()			
	(1.)	$e^{-ax} = 1 - ax + \frac{a^2x^2}{2} - \cdots$	1.4	
	(b)	$e^{-x}=1-ax+\frac{a}{2}-\cdots$	1A	
	(c)	$\frac{(2x+1)^3}{e^{ax}} = (8x^3 + 12x^2 + 6x + 1)\left(1 - ax + \frac{a^2x^2}{2} - \dots\right)$	1M	
	(-)	e^{ax}		
		The coefficient of $x^2 = 12(1) + 6(-a) + (1)\frac{a^2}{2}$	1M	
		The coefficient of $x = 12(1) + 6(-a) + (1) - \frac{a}{2}$	1101	
		$\frac{a^2}{2} - 6a + 12 = -4$		
		-		
		$a^2 - 12a + 32 = 0$ a = 4 or 8	1A	
		<i>u</i> – 4 01 8	1A	
			(5)	
		<u>-1</u>		
2.	(a)	$t = y^3 + 2y^{-2} + 1$		
		$t = y^{3} + 2y^{\frac{-1}{2}} + 1$ $\frac{dt}{dy} = 3y^{2} - y^{\frac{-3}{2}}$		
		$\frac{dy}{dy} = 3y^2 - y^2$	1A	
	(b)	$e^t = x^{x^2 + 1}$		
		$t = (x^2 + 1) \ln x$	1A	
		$\frac{\mathrm{d}t}{\mathrm{d}x} = \frac{x^2 + 1}{x} + 2x \ln x$	1A	
		dx = x		
		dy dt dt		
	(c)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}t}{\mathrm{d}x} \div \frac{\mathrm{d}t}{\mathrm{d}y}$	1M	
		3		OR $\frac{\frac{x^2 + 1}{x} + 2x \ln x}{3y^2 - y^{\frac{-3}{2}}}$
		$= \frac{(x^2 + 1 + 2x^2 \ln x)y^{\frac{3}{2}}}{x\left(3y^{\frac{7}{2}} - 1\right)}$	1A	$OR = \frac{x}{x}$
		$\left(\frac{7}{2},\frac{7}{2},1\right)$		$\frac{-3}{2}$
		$x \left(\frac{3y^2 - 1}{2} \right)$		y - y
			(5)	-
3.	(2)	By similar triangles, we have $h = 20$	1M	
3.	(a)	By similar triangles, we have $\frac{h}{r} = \frac{20}{15}$.	11VI	15 am
		$h = \frac{4r}{3}$		15 cm
		· · · · · · · · · · · · · · · · · · ·		
		$\therefore V = \frac{1}{3}\pi r^2 \left(\frac{4r}{3}\right)$		rem
		4 3		20 cm
		$= \frac{4}{9}\pi r^3$ $A = \pi r \sqrt{r^2 + \left(\frac{4r}{3}\right)^2}$	1A	h cm
		$\left(4r\right)^2$		
		$A = \pi r \sqrt{r^2 + \left(\frac{\tau}{3}\right)}$		v v
		5 2		
		$=\frac{5}{3}\pi r^2$	1A	

Solution	Marks	Remarks
(b) (i) $\frac{dV}{dt} = \frac{dV}{dr} \cdot \frac{dr}{dt}$ $= \frac{4}{3}\pi r^2 \frac{dr}{dt}$ $-2\pi = \frac{4}{3}\pi (3)^2 \frac{dr}{dt}$	1M <i>←</i>	
$\frac{dr}{dt} = \frac{-1}{6}$ Hence the rate of change of the radius of the water surface is $\frac{-1}{6}$ cm/s.	1A	Either one
(ii) $\frac{dA}{dt} = \frac{dA}{dr} \cdot \frac{dr}{dt}$ $= \frac{10}{3} \pi r \cdot \frac{dr}{dt}$ $= \frac{10}{3} \pi (3) \left(\frac{-1}{6}\right)$	*	
$= \frac{-5}{3}\pi$ Hence the rate of change of the area of the wet surface is $\frac{-5}{3}\pi$ cm ² /s.	1A	
Thence the rate of change of the area of the wet surface is 3	(6)	
(a) $y = x(2x-1)^{\frac{1}{2}}$		
$\frac{dy}{dx} = (2x - 1)^{\frac{1}{2}} + x \cdot \frac{1}{2} (2x - 1)^{\frac{-1}{2}} (2)$	1M	For product rule
$=\frac{3x-1}{(2x-1)^{\frac{1}{2}}}$	1A	
(b) For tangents parallel to $2x - y = 0$, we need $\frac{dy}{dx} = 2$.		
$\frac{3x-1}{(2x-1)^{\frac{1}{2}}} = 2$	1M	
$9x^{2} - 6x + 1 = 4(2x - 1)$ $9x^{2} - 14x + 5 = 0$ 5		
$x=1$ or $\frac{5}{9}$ For $x=1$, $y=1$ and hence the equation of the tangent is	1A	
y-1 = 2(x-1) 2x-y-1 = 0 5 5	1A	
For $x = \frac{5}{9}$, $y = \frac{5}{27}$ and hence the equation of the tangent is $y - \frac{5}{27} = 2\left(x - \frac{5}{9}\right)$		
54x - 27y - 25 = 0	1A	
	(6)	

		六K软肿多胞 TON TEACHERO	OOL OI	1-1
		Solution	Marks	Remarks
5.	(a)	$1 - \frac{e}{e^x} = e^x - e$		
		e^{x} $(e^{x})^{2} - (e+1)e^{x} + e = 0$	1 A	
		$(e^{x})^{2} - (e+1)e^{x} + e = 0$ $e^{x} = 1$ or e	1A	
		e = 1 or $ex = 0$ or 1	1A	
	(1.)			
	(b)	The area of the region bounded by C_1 and C_2		
		$= \int_0^1 \left[1 - \frac{e}{e^x} - (e^x - e) \right] dx$	1 M	For lower and upper limits
		$= \left[x + e \cdot e^{-x} - e^x + ex \right]_0^1$	1M	Accept $\left[e^x - ex - x - e \cdot e^{-x}\right]_0^1$
		=1+1-e+e-e+1	1112	recept by our more 10
		=3-e	1A	
			(5)	
_			. ,	
6.	(a)	$Var(2\overline{X} + 7) = 4Var(\overline{X})$		
	()		13.4	For $Var(\overline{X}) = \frac{Var(X)}{n}$
		$=4\left(\frac{8}{10}\right)$	1M	For $\operatorname{Var}(X) = \frac{n}{n}$
		= 3.2	1A	
	(b)	A 97% confidence interval for μ		
		$=\left(50-2.17\times\frac{\sqrt{8}}{\sqrt{10}},50+2.17\times\frac{\sqrt{8}}{\sqrt{10}}\right)$	1M+1A	1M for $50 \pm d$
		$-\left(30^{-2.17} \times \sqrt{10}, 30^{+2.17} \times \sqrt{10}\right)$	11/11/17/	1A for 2.17
		=(48.0591,51.9409)	1A	
			(5)	
7	(a)	P(a player is rewarded) = 1 2 + 1 1		
7.	(a)	P(a player is rewarded) = $\frac{1}{2} \cdot \frac{2}{5} + \frac{1}{2} \cdot \frac{1}{5}$	1.4	
		= 0.3	1A	
	(b)	P(both players are rewarded one player is rewarded) = $\frac{0.3 \times 0.3}{0.2 \times 0.3 \times 0.3}$	1M	OR $\frac{0.3 \times 0.3}{1 - 0.7 \times 0.7}$
	(-)	$0.3 \times 0.3 + 0.3 \times 0.7 \times 2$		
		$=\frac{3}{17}$	1A	OR 0.1765
		1 × 2		
	(c)	E(no. of players having drawn a blue ball from $A = 60 \times \frac{\frac{1}{2} \times \frac{2}{5}}{0.3}$	1M	
		= 40	1A	
			(5)	
_			(3)	
8.	(a)	P(a box contains more than 1 rotten eggs)		
	` /	$=1-(0.96)^{30}-C_1^{30}(0.96)^{29}(0.04)$	1M+1M	1M for binomial prob 1M for correct cases
		≈ 0.338820302		11v1 101 contect cases
		≈ 0.3388	1A	
	(b)	(i) P(the 1^{st} box containing more than 1 rotten egg is the 6^{th} box inspected)		
		$= (1 - 0.338820302)^5 (0.338820302)$	1M	
		≈ 0.0428	1A	I

(ii) E(no. of boxes inspected until a box containing more than 1 rotten egg is found) $= \frac{1}{0.338820302}$ ≈ 2.9514 1M 1A (7)		Solution	Morles	Damarka
$ \begin{array}{c} = \frac{1}{0.338820302} \\ = \frac{1}{0.338820302} \\ \approx 2.9514 \end{array} \\ \begin{array}{c} \text{IM} \\ \text{IA} \\ \end{array} \\ = \frac{1}{0.338820302} \\ \approx 2.9514 \\ \end{array} \\ \begin{array}{c} \text{IM} \\ \text{IA} \\ \end{array} \\ \begin{array}{c} \text{IA} \\ \end{array} \\ \begin{array}{c} \text{IA} \\ \text{P}(A) = P(A \cap B) + P(A \cap B') \\ = 0.12 + k \\ P(A \mid B') = \frac{P(A \cap B')}{P(B')} \\ \text{O.6} = \frac{k}{1 - P(B)} \\ \text{P}(B) = 1 - \frac{5k}{3} \\ \text{P}(A \cup B) = P(A) + P(B) - P(A \cap B) \\ = (0.12 + k) + \left(1 - \frac{5k}{3}\right) - 0.12 \\ = 1 - \frac{2k}{3} \\ \text{IA} \\ \end{array} \\ \begin{array}{c} \text{IB} \\ \text{IA} \\ \end{array} \\ \begin{array}{c} \text{IB} \\ $	(i	i) E(no, of boxes inspected until a box containing more than 1 rotten egg is found)	Marks	Remarks
$\begin{array}{c} 0.33820302\\ = 2.9514 \end{array} \hspace{1cm} 1A \\ \hline (7) \\ \hline \\ (a) \hspace{1cm} P(A) = P(A \cap B) + P(A \cap B')\\ = 0.12 + k \\ P(A \mid B') = \frac{P(A \cap B')}{P(B')} \\ 0.6 = \frac{k}{1 - P(B)} \\ P(B) = 1 - \frac{5k}{3} \\ P(A \cup B) = P(A) + P(B) - P(A \cap B)\\ = (0.12 + k) + \left(1 - \frac{5k}{3}\right) - 0.12 \\ = 1 - \frac{2k}{3} \\ \hline (b) \hspace{1cm} \text{If } A \text{ and } B \text{ are independent, } P(A)P(B) = P(A \cap B) \\ k = 0.48 \cdot \frac{5k^2}{3} = 0 \\ k = 0.48 \cdot \frac{10}{3} \cdot \frac{10}{3} \cdot \frac{10}{3} = 0.12 \\ \hline \text{IM} \\ \frac{Alternative solution 1}{11 \cdot A \text{ and } B \text{ are independent, } P(A) = P(A \mid B') \\ 0.012 + k = 0.6 \\ k = 0.48 \cdot \frac{10}{3} \cdot \frac{10}{3} = k \\ \hline \text{IM} \\ \frac{5k^2}{3} = k \\ k = 0.48 \cdot \frac{10}{3} \cdot \frac{10}{3} \cdot \frac{10}{3} = k \\ \hline \text{IM} \\ \frac{5k^2}{3} = 0.8k = 0 \\ k = 0.48 \cdot \frac{10}{3} \cdot \frac{10}{3} \cdot \frac{10}{3} \cdot \frac{10}{3} = P(A \mid B') \\ \frac{10}{3} \cdot \frac{10}{3} \cdot \frac{10}{3} \cdot \frac{10}{3} \cdot \frac{10}{3} = P(A \mid B') \\ \frac{10}{3} \cdot \frac{10}{3} \cdot \frac{10}{3} \cdot \frac{10}{3} \cdot \frac{10}{3} = P(A \mid B') \\ \frac{10}{3} \cdot \frac{10}{3} \cdot \frac{10}{3} \cdot \frac{10}{3} \cdot \frac{10}{3} = P(A \mid B') \\ \frac{10.12}{3} \cdot \frac{10}{3} \cdot \frac{10}{3} \cdot \frac{10}{3} \cdot \frac{10}{3} = \frac{10}{3} \cdot \frac{10}{3} \cdot \frac{10}{3} \cdot \frac{10}{3} \cdot \frac{10}{3} = \frac{10}{3} \cdot \frac{10}{3} \cdot \frac{10}{3} \cdot \frac{10}{3} = \frac{10}{3} \cdot \frac{10}{3} \cdot \frac{10}{3} = \frac{10}{3} \cdot \frac{10}{3} \cdot \frac{10}{3} \cdot \frac{10}{3} = \frac{10}{3} \cdot \frac{10}{3} \cdot \frac{10}{3} \cdot \frac{10}{3} \cdot \frac{10}{3} = \frac{10}{3} \cdot \frac{10}{3} = \frac{10}{3} \cdot 1$	(1	1	1M	
(a) $P(A) = P(A \cap B) + P(A \cap B')$ = 0.12 + k $P(A \mid B') = \frac{P(A \cap B')}{P(B')}$ $0.6 = \frac{k}{1 - P(B)}$ $P(B) = 1 - \frac{5k}{3}$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $= (0.12 + k) + \left(1 - \frac{5k}{3}\right) - 0.12$ IM $= 1 - \frac{2k}{3}$ IA (b) If A and B are independent, $P(A)P(B) = P(A \cap B)$. $(0.12 + k)\left(1 - \frac{5k}{3}\right) = 0.12$ IM $0.8k - \frac{5k^2}{3} = 0$ k = 0.48 (or 0 (rejected)) IA Alternative solution 1 If A and B are independent, $P(A) = P(A \mid B')$. 0.12 + k = 0.6 IM Alternative solution 2 If A and B are independent, $P(A)P(B') = P(A \cap B')$. $(0.12 + k)\left(\frac{5k}{3}\right) = k$ IM Alternative solution 2 If A and B are independent, A and A are independent, A and A are independent, A are independent, A are independent, A and A are independent, A and A are independent, A are independent, A are independent, A and A are independent, A are independent, A and A are independent, A are independent, A and A are independent.		0.338820302		
(a) $P(A) = P(A \cap B) + P(A \cap B')$ = 0.12 + k $P(A \mid B') = \frac{P(A \cap B)}{P(B')}$ $0.6 = \frac{k}{1 - P(B)}$ $P(B) = 1 - \frac{5k}{3}$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $= (0.12 + k) + \left(1 - \frac{5k}{3}\right) - 0.12$ IM $= 1 - \frac{2k}{3}$ 1A (b) If A and B are independent, $P(A)P(B) = P(A \cap B)$. $(0.12 + k)\left(1 - \frac{5k}{3}\right) = 0.12$ IM $0.8k - \frac{5k^2}{3} = 0$ k = 0.48 [or O (rejected)] 1A Alternative solution 1 If A and B are independent, $P(A) = P(A \mid B')$. $O(.12 + k)\left(\frac{5k}{3}\right) = k$ IM $O(.12 + k)\left(\frac{5k}{3}\right) = k$ IM		≈ 2.9514	1A	
$ \begin{array}{c} = 0.12 + k \\ P(A \mid B') = \frac{P(A \cap B')}{P(B')} \\ 0.6 = \frac{k}{1 - P(B)} \\ P(B) = 1 - \frac{5k}{3} \\ P(A \cup B) = P(A) + P(B) - P(A \cap B) \\ = (0.12 + k) + \left(1 - \frac{5k}{3}\right) - 0.12 \\ = 1 - \frac{2k}{3} \\ (b) \text{If } A \text{ and } B \text{ are independent, } P(A)P(B) = P(A \cap B) \\ 0.12 + k \left(1 - \frac{5k}{3}\right) = 0.12 \\ 0.8k - \frac{5k^2}{3} = 0 \\ k = 0.48 \text{ion Otrejected}); \\ \text{IA} \\ \hline \frac{\text{Alternative solution 1}}{\text{II } A \text{ and } B \text{ are independent, } P(A) = P(A \mid B') \\ 0.12 + k = 0.6 \\ k = 0.48 \\ \hline \frac{\text{Alternative solution 2}}{\text{II } A \text{ and } B \text{ are independent, } P(A)P(B') = P(A \cap B') \\ \hline 0.12 + k = 0.6 \\ k = 0.48 \\ \hline \frac{\text{Sk}^2}{3} - 0.8k = 0 \\ k = 0.48 \text{in } O.07 \text{rejected}; \\ \hline \frac{\text{Sk}^2}{3} - 0.8k = 0 \\ k = 0.48 \text{in } O.07 \text{rejected}; \\ \hline \frac{\text{Sk}^2}{3} - 0.8k = 0 \\ k = 0.48 \text{in } O.07 \text{rejected}; \\ \hline \frac{\text{Sk}^2}{3} - 0.8k = 0 \\ k = 0.48 \text{in } O.07 \text{rejected}; \\ \hline \frac{\text{Sk}^2}{3} - 0.8k = 0 \\ k = 0.48 \text{in } O.07 \text{rejected}; \\ \hline \frac{\text{Sk}^2}{3} - 0.8k = 0 \\ k = 0.48 \text{in } O.07 \text{rejected}; \\ \hline \frac{\text{Sk}^2}{3} - 0.8k = 0 \\ k = 0.48 \text{in } O.07 \text{rejected}; \\ \hline \frac{\text{Sk}^2}{3} - 0.8k = 0 \\ k = 0.48 \text{in } O.07 \text{rejected}; \\ \hline \frac{\text{Sk}^2}{3} - 0.8k = 0 \\ \text{Sk$			(7)	
$ \begin{array}{c} = 0.12 + k \\ P(A \mid B') = \frac{P(A \cap B')}{P(B')} \\ 0.6 = \frac{k}{1 - P(B)} \\ P(B) = 1 - \frac{5k}{3} \\ P(A \cup B) = P(A) + P(B) - P(A \cap B) \\ = (0.12 + k) + \left(1 - \frac{5k}{3}\right) - 0.12 \\ = 1 - \frac{2k}{3} \\ (b) \text{If } A \text{ and } B \text{ are independent, } P(A)P(B) = P(A \cap B) \\ 0.12 + k \left(1 - \frac{5k}{3}\right) = 0.12 \\ 0.8k - \frac{5k^2}{3} = 0 \\ k = 0.48 \text{ion Otrejected}); \\ \text{IA} \\ \hline \frac{\text{Alternative solution 1}}{\text{II } A \text{ and } B \text{ are independent, } P(A) = P(A \mid B') \\ 0.12 + k = 0.6 \\ k = 0.48 \\ \hline \frac{\text{Alternative solution 2}}{\text{II } A \text{ and } B \text{ are independent, } P(A)P(B') = P(A \cap B') \\ \hline 0.12 + k = 0.6 \\ k = 0.48 \\ \hline \frac{\text{Sk}^2}{3} - 0.8k = 0 \\ k = 0.48 \text{in } O.07 \text{rejected}; \\ \hline \frac{\text{Sk}^2}{3} - 0.8k = 0 \\ k = 0.48 \text{in } O.07 \text{rejected}; \\ \hline \frac{\text{Sk}^2}{3} - 0.8k = 0 \\ k = 0.48 \text{in } O.07 \text{rejected}; \\ \hline \frac{\text{Sk}^2}{3} - 0.8k = 0 \\ k = 0.48 \text{in } O.07 \text{rejected}; \\ \hline \frac{\text{Sk}^2}{3} - 0.8k = 0 \\ k = 0.48 \text{in } O.07 \text{rejected}; \\ \hline \frac{\text{Sk}^2}{3} - 0.8k = 0 \\ k = 0.48 \text{in } O.07 \text{rejected}; \\ \hline \frac{\text{Sk}^2}{3} - 0.8k = 0 \\ k = 0.48 \text{in } O.07 \text{rejected}; \\ \hline \frac{\text{Sk}^2}{3} - 0.8k = 0 \\ k = 0.48 \text{in } O.07 \text{rejected}; \\ \hline \frac{\text{Sk}^2}{3} - 0.8k = 0 \\ \text{Sk$				
$ \begin{array}{c} = 0.12 + k \\ P(A \mid B') = \frac{P(A \cap B')}{P(B')} \\ 0.6 = \frac{k}{1 - P(B)} \\ P(B) = 1 - \frac{5k}{3} \\ P(A \cup B) = P(A) + P(B) - P(A \cap B) \\ = (0.12 + k) + \left(1 - \frac{5k}{3}\right) - 0.12 \\ = 1 - \frac{2k}{3} \\ (b) \text{If } A \text{ and } B \text{ are independent, } P(A)P(B) = P(A \cap B) \\ 0.12 + k \left(1 - \frac{5k}{3}\right) = 0.12 \\ 0.8k - \frac{5k^2}{3} = 0 \\ k = 0.48 \text{ion Otrejected}); \\ \text{IA} \\ \hline \frac{\text{Alternative solution 1}}{\text{II } A \text{ and } B \text{ are independent, } P(A) = P(A \mid B') \\ 0.12 + k = 0.6 \\ k = 0.48 \\ \hline \frac{\text{Alternative solution 2}}{\text{II } A \text{ and } B \text{ are independent, } P(A)P(B') = P(A \cap B') \\ \hline 0.12 + k = 0.6 \\ k = 0.48 \\ \hline \frac{\text{Sk}^2}{3} - 0.8k = 0 \\ k = 0.48 \text{in } O.07 \text{rejected}; \\ \hline \frac{\text{Sk}^2}{3} - 0.8k = 0 \\ k = 0.48 \text{in } O.07 \text{rejected}; \\ \hline \frac{\text{Sk}^2}{3} - 0.8k = 0 \\ k = 0.48 \text{in } O.07 \text{rejected}; \\ \hline \frac{\text{Sk}^2}{3} - 0.8k = 0 \\ k = 0.48 \text{in } O.07 \text{rejected}; \\ \hline \frac{\text{Sk}^2}{3} - 0.8k = 0 \\ k = 0.48 \text{in } O.07 \text{rejected}; \\ \hline \frac{\text{Sk}^2}{3} - 0.8k = 0 \\ k = 0.48 \text{in } O.07 \text{rejected}; \\ \hline \frac{\text{Sk}^2}{3} - 0.8k = 0 \\ k = 0.48 \text{in } O.07 \text{rejected}; \\ \hline \frac{\text{Sk}^2}{3} - 0.8k = 0 \\ k = 0.48 \text{in } O.07 \text{rejected}; \\ \hline \frac{\text{Sk}^2}{3} - 0.8k = 0 \\ \text{Sk$. (a) F	$P(A) = P(A \cap B) + P(A \cap B')$		
$0.6 = \frac{k}{1 - P(B)}$ $P(B) = 1 - \frac{5k}{3}$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $= (0.12 + k) + \left(1 - \frac{5k}{3}\right) - 0.12$ $= 1 - \frac{2k}{3}$ $(b) If A and B are independent, P(A)P(B) = P(A \cap B). (0.12 + k)\left(1 - \frac{5k}{3}\right) = 0.12 0.8k - \frac{5k^2}{3} = 0 k = 0.48 \underbrace{\text{ior } 0 \text{ (rejected)}}_{\text{is}} \frac{Alternative solution 1}{1 \text{If } A \text{ and } B \text{ are independent, } P(A) = P(A \mid B') \text{ .}} 0.12 + k = 0.6 k = 0.48 1A \frac{Alternative solution 2}{1 \text{If } A \text{ and } B \text{ are independent, } P(A)P(B') = P(A \cap B') \text{ .}} (0.12 + k)\left(\frac{5k}{3}\right) = k 0.012 + k\left(\frac{5k}{3}\right) = k 1 \text{ IM} \frac{5k^2}{3} - 0.8k = 0 k = 0.48 \underbrace{\text{ior } 0 \text{ (rejected)}}_{\text{ior } 0 \text{ (rejected)}} 1 \text{ IA} \frac{Alternative solution 3}{1 \text{ If } A \text{ and } B \text{ are independent, } P(A \mid B) = P(A \mid B') \text{ .}} \frac{P(A \cap B)}{P(B)} = P(A \mid B') \frac{0.12}{1 - \frac{5k}{3}} = 0.6 \frac{0.12}{1 - \frac{5k}{3}} = 0.6 \frac{0.12}{1 - \frac{5k}{3}} = 0.6 \frac{0.12}{1 - \frac{5k}{3}} = 0.6$		= 0.12 + k	1A	
$0.6 = \frac{k}{1 - P(B)}$ $P(B) = 1 - \frac{5k}{3}$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $= (0.12 + k) + \left(1 - \frac{5k}{3}\right) - 0.12$ $= 1 - \frac{2k}{3}$ $(b) If A and B are independent, P(A)P(B) = P(A \cap B). (0.12 + k)\left(1 - \frac{5k}{3}\right) = 0.12 0.8k - \frac{5k^2}{3} = 0 k = 0.48 \underbrace{\text{ior } 0 \text{ (rejected)}}_{\text{is}} \frac{Alternative solution 1}{1 \text{If } A \text{ and } B \text{ are independent, } P(A) = P(A \mid B') \text{ .}} 0.12 + k = 0.6 k = 0.48 1A \frac{Alternative solution 2}{1 \text{If } A \text{ and } B \text{ are independent, } P(A)P(B') = P(A \cap B') \text{ .}} (0.12 + k)\left(\frac{5k}{3}\right) = k 0.012 + k\left(\frac{5k}{3}\right) = k 1 \text{ IM} \frac{5k^2}{3} - 0.8k = 0 k = 0.48 \underbrace{\text{ior } 0 \text{ (rejected)}}_{\text{ior } 0 \text{ (rejected)}} 1 \text{ IA} \frac{Alternative solution 3}{1 \text{ If } A \text{ and } B \text{ are independent, } P(A \mid B) = P(A \mid B') \text{ .}} \frac{P(A \cap B)}{P(B)} = P(A \mid B') \frac{0.12}{1 - \frac{5k}{3}} = 0.6 \frac{0.12}{1 - \frac{5k}{3}} = 0.6 \frac{0.12}{1 - \frac{5k}{3}} = 0.6 \frac{0.12}{1 - \frac{5k}{3}} = 0.6$	F	$P(A \mid B') = \frac{P(A \cap B')}{P(A \mid B')}$		
$P(B) = 1 - \frac{5k}{3}$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $= (0.12 + k) + \left(1 - \frac{5k}{3}\right) - 0.12$ $= 1 - \frac{2k}{3}$ (b) If A and B are independent, $P(A)P(B) = P(A \cap B)$. $(0.12 + k)\left(1 - \frac{5k}{3}\right) = 0.12$ $0.8k - \frac{5k^2}{3} = 0$ $k = 0.48 \text{ [or 0] (rejected)}$ $Alternative solution 1$ If A and B are independent, $P(A) = P(A \mid B')$. $0.12 + k = 0.6$ $k = 0.48$ $1A$ Alternative solution 2 If A and B are independent, $P(A)P(B') = P(A \cap B')$. $(0.12 + k)\left(\frac{5k}{3}\right) = k$ $1M$ $\frac{5k^2}{3} - 0.8k = 0$ $k = 0.48 \text{ [or 0] (rejected)}$ $1A$ Alternative solution 3 If A and B are independent, $P(A \mid B) = P(A \mid B')$. $\frac{5k^2}{3} - 0.8k = 0$ $k = 0.48 \text{ [or 0] (rejected)}$ $1A$ Alternative solution 3 If A and B are independent, $P(A \mid B) = P(A \mid B')$. $\frac{5k^2}{3} - 0.8k = 0$ $1A$ $\frac{5k^2}{3} - 0.8k = 0$ $\frac{5k^2}{3} - 0.8k$				
$P(B) = 1 - \frac{5k}{3}$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $= (0.12 + k) + \left(1 - \frac{5k}{3}\right) - 0.12$ $= 1 - \frac{2k}{3}$ (b) If A and B are independent, $P(A)P(B) = P(A \cap B)$. $(0.12 + k)\left(1 - \frac{5k}{3}\right) = 0.12$ $0.8k - \frac{5k^2}{3} = 0$ $k = 0.48 \text{ [or 0] (rejected)}$ $Alternative solution 1$ If A and B are independent, $P(A) = P(A \mid B')$. $0.12 + k = 0.6$ $k = 0.48$ $1A$ Alternative solution 2 If A and B are independent, $P(A)P(B') = P(A \cap B')$. $(0.12 + k)\left(\frac{5k}{3}\right) = k$ $1M$ $\frac{5k^2}{3} - 0.8k = 0$ $k = 0.48 \text{ [or 0] (rejected)}$ $1A$ Alternative solution 3 If A and B are independent, $P(A \mid B) = P(A \mid B')$. $\frac{5k^2}{3} - 0.8k = 0$ $k = 0.48 \text{ [or 0] (rejected)}$ $1A$ Alternative solution 3 If A and B are independent, $P(A \mid B) = P(A \mid B')$. $\frac{5k^2}{3} - 0.8k = 0$ $1A$ $\frac{5k^2}{3} - 0.8k = 0$ $\frac{5k^2}{3} - 0.8k$	0	$0.6 = \frac{\kappa}{1 - P(R)}$		
$P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $= (0.12 + k) + \left(1 - \frac{5k}{3}\right) - 0.12$ $= 1 - \frac{2k}{3}$ (b) If A and B are independent, $P(A)P(B) = P(A \cap B)$. $(0.12 + k)\left(1 - \frac{5k}{3}\right) = 0.12$ $0.8k - \frac{5k^2}{3} = 0$ $k = 0.48 \text{ [or 0 (rejected)]}$ $1A$ $\frac{Alternative solution 1}{If A \text{ and } B \text{ are independent, } P(A) = P(A \mid B') \text{ .}}$ $0.12 + k = 0.6$ $k = 0.48$ $\frac{Alternative solution 2}{If A \text{ and } B \text{ are independent, } P(A)P(B') = P(A \cap B') \text{ .}}$ $(0.12 + k)\left(\frac{5k}{3}\right) = k$ $1M$ $\frac{5k^2}{3} - 0.8k = 0$ $k = 0.48 \text{ [or 0 (rejected)]}$ $1A$ $\frac{Alternative solution 3}{If A \text{ and } B \text{ are independent, } P(A \mid B) = P(A \mid B') \text{ .}}$ $\frac{P(A \cap B)}{P(B)} = P(A \mid B')$ $\frac{0.12}{1 - \frac{5k}{3}} = 0.6$ $1M$				
$= (0.12+k) + \left(1 - \frac{5k}{3}\right) - 0.12$ $= 1 - \frac{2k}{3}$ 1A (b) If A and B are independent, $P(A)P(B) = P(A \cap B)$. $(0.12+k)\left(1 - \frac{5k}{3}\right) = 0.12$ 1M $0.8k - \frac{5k^2}{3} = 0$ $k = 0.48 \text{ (or 0 (rejected))}$ 1A Alternative solution 1 If A and B are independent, $P(A) = P(A \mid B')$. $0.12+k = 0.6$ $k = 0.48$ 1A Alternative solution 2 If A and B are independent, $P(A)P(B') = P(A \cap B')$. $(0.12+k)\left(\frac{5k}{3}\right) = k$ 1M $\frac{5k^2}{3} - 0.8k = 0$ $k = 0.48 \text{ (or 0 (rejected))}$ 1A Alternative solution 3 If A and B are independent, A are independent, A are independent, A and A are independent A and	ŀ	$P(B) = 1 - \frac{1}{3}$	l IA	
$=1-\frac{2k}{3}$ (b) If A and B are independent, $P(A)P(B)=P(A\cap B)$. $(0.12+k)\left(1-\frac{5k}{3}\right)=0.12$ $0.8k-\frac{5k^2}{3}=0$ $k=0.48 \text{ [or } 0 \text{ (rejected)};$ $1A$ $\frac{Alternative solution 1}{If } A \text{ and } B \text{ are independent, } P(A)=P(A B') \text{ .}$ $0.12+k=0.6$ $k=0.48$ $\frac{Alternative solution 2}{If } A \text{ and } B \text{ are independent, } P(A)P(B')=P(A\cap B') \text{ .}$ $(0.12+k)\left(\frac{5k}{3}\right)=k$ $1M$ $\frac{5k^2}{3}-0.8k=0$ $k=0.48 \text{ [or } 0 \text{ (rejected)};$ $Alternative solution 3$ If A and B are independent, A are independent, A are independent, A and A are independent A and A are indepe	F			
$=1-\frac{2k}{3}$ (b) If A and B are independent, $P(A)P(B)=P(A\cap B)$. $(0.12+k)\left(1-\frac{5k}{3}\right)=0.12$ $0.8k-\frac{5k^2}{3}=0$ $k=0.48 \text{ [or } 0 \text{ (rejected)};$ $1A$ $\frac{Alternative solution 1}{If } A \text{ and } B \text{ are independent, } P(A)=P(A B') \text{ .}$ $0.12+k=0.6$ $k=0.48$ $\frac{Alternative solution 2}{If } A \text{ and } B \text{ are independent, } P(A)P(B')=P(A\cap B') \text{ .}$ $(0.12+k)\left(\frac{5k}{3}\right)=k$ $1M$ $\frac{5k^2}{3}-0.8k=0$ $k=0.48 \text{ [or } 0 \text{ (rejected)};$ $Alternative solution 3$ If A and B are independent, A are independent, A are independent, A and A are independent A and A are indepe		$=(0.12+k)+\left(1-\frac{5k}{2}\right)-0.12$	1M	
(b) If A and B are independent, $P(A)P(B) = P(A \cap B)$. $(0.12+k)\left(1-\frac{5k}{3}\right) = 0.12$ $k = 0.48 \frac{5k^2}{3} = 0$ $k = 0.48 \frac{\text{for } 0.\text{(rejected)}}{\text{in } A \text{ and } B \text{ are independent, } P(A) = P(A \mid B') \text{ .}$ $0.12+k = 0.6$ $k = 0.48$ $\frac{\text{Alternative solution } 2}{\text{If } A \text{ and } B \text{ are independent, } P(A)P(B') = P(A \cap B') \text{ .}}$ $(0.12+k)\left(\frac{5k}{3}\right) = k$ $(0.12+k)\left(\frac{5k}{3}\right) = k$ $1M$ $\frac{5k^2}{3} - 0.8k = 0$ $k = 0.48 \frac{\text{for } 0.\text{(rejected)}}{\text{in } A \text{ of } B \text{ are independent, } P(A \mid B) = P(A \mid B') \text{ .}}$ $\frac{P(A \cap B)}{P(B)} = P(A \mid B')$ $\frac{0.12}{1-\frac{5k}{3}} = 0.6$ $1M$				
$(0.12+k)\left(1-\frac{5k}{3}\right)=0.12$ $0.8k-\frac{5k^2}{3}=0$ $k=0.48 \text{ for 0 (rejected)};$ $1A$ Alternative solution 1 If A and B are independent, $P(A)=P(A B')$. $0.12+k=0.6$ $k=0.48$ $1A$ Alternative solution 2 If A and B are independent, $P(A)P(B')=P(A\cap B')$. $(0.12+k)\left(\frac{5k}{3}\right)=k$ $(0.12+k)\left(\frac{5k}{3}\right)=k$ $1M$ $\frac{5k^2}{3}-0.8k=0$ $k=0.48 \text{ for 0 (rejected)};$ $1A$ Alternative solution 3 If A and B are independent, $P(A B)=P(A B')$. $\therefore \frac{P(A\cap B)}{P(B)}=P(A B')$ $\frac{0.12}{1-\frac{5k}{3}}=0.6$ $1M$		$=1-\frac{2k}{3}$	1A	
$(0.12+k)\left(1-\frac{5k}{3}\right)=0.12$ $0.8k-\frac{5k^2}{3}=0$ $k=0.48 \text{ for 0 (rejected)};$ $1A$ Alternative solution 1 If A and B are independent, $P(A)=P(A B')$. $0.12+k=0.6$ $k=0.48$ $1A$ Alternative solution 2 If A and B are independent, $P(A)P(B')=P(A\cap B')$. $(0.12+k)\left(\frac{5k}{3}\right)=k$ $(0.12+k)\left(\frac{5k}{3}\right)=k$ $1M$ $\frac{5k^2}{3}-0.8k=0$ $k=0.48 \text{ for 0 (rejected)};$ $1A$ Alternative solution 3 If A and B are independent, $P(A B)=P(A B')$. $\therefore \frac{P(A\cap B)}{P(B)}=P(A B')$ $\frac{0.12}{1-\frac{5k}{3}}=0.6$ $1M$		J		
$0.8k - \frac{5k^2}{3} = 0$ $k = 0.48 \text{ ior } 0 \text{ (rejected)};$ $1A$ Alternative solution 1 If A and B are independent, $P(A) = P(A B')$. $0.12 + k = 0.6$ $k = 0.48$ Alternative solution 2 If A and B are independent, $P(A)P(B') = P(A \cap B')$. $(0.12 + k) \left(\frac{5k}{3}\right) = k$ $1M$ $\frac{5k^2}{3} - 0.8k = 0$ $k = 0.48 \text{ ior } 0 \text{ (rejected)};$ 1A Alternative solution 3 If A and B are independent, $P(A B) = P(A B')$. $\therefore \frac{P(A \cap B)}{P(B)} = P(A B')$ $\frac{0.12}{1 - \frac{5k}{3}} = 0.6$ $1M$				
$0.8k - \frac{5k^2}{3} = 0$ $k = 0.48 \text{ ior } 0 \text{ (rejected)};$ $1A$ Alternative solution 1 If A and B are independent, $P(A) = P(A B')$. $0.12 + k = 0.6$ $k = 0.48$ Alternative solution 2 If A and B are independent, $P(A)P(B') = P(A \cap B')$. $(0.12 + k) \left(\frac{5k}{3}\right) = k$ $1M$ $\frac{5k^2}{3} - 0.8k = 0$ $k = 0.48 \text{ ior } 0 \text{ (rejected)};$ 1A Alternative solution 3 If A and B are independent, $P(A B) = P(A B')$. $\therefore \frac{P(A \cap B)}{P(B)} = P(A B')$ $\frac{0.12}{1 - \frac{5k}{3}} = 0.6$ $1M$	($(0.12+k)\left(1-\frac{5k}{3}\right)=0.12$	1M	
$k = 0.48 \ \ \ \ \ \ \ \ \ \ \ \ \ $				
$k = 0.48 \ \ \ \ \ \ \ \ \ \ \ \ \ $	0	$0.8k - \frac{5k^2}{3} = 0$		
Alternative solution 1 If A and B are independent, $P(A) = P(A B')$. $0.12 + k = 0.6$ $k = 0.48$ Alternative solution 2 If A and B are independent, $P(A)P(B') = P(A \cap B')$. $(0.12 + k) \left(\frac{5k}{3}\right) = k$ $1M$ $\frac{5k^2}{3} - 0.8k = 0$ $k = 0.48 \text{ [or 0 (rejected)]}$ Alternative solution 3 If A and B are independent, $P(A B) = P(A B')$. $\therefore \frac{P(A \cap B)}{P(B)} = P(A B')$ $\frac{0.12}{1 - \frac{5k}{3}} = 0.6$ $1M$		3	1A	
If A and B are independent, $P(A) = P(A B')$. $0.12 + k = 0.6$ $k = 0.48$ IM Alternative solution 2 If A and B are independent, $P(A)P(B') = P(A \cap B')$. $(0.12 + k) \left(\frac{5k}{3}\right) = k$ IM $\frac{5k^2}{3} - 0.8k = 0$ $k = 0.48 \text{ [or 0 (rejected)]}$ Alternative solution 3 If A and B are independent, $P(A B) = P(A B')$. $\therefore \frac{P(A \cap B)}{P(B)} = P(A B')$ $\frac{0.12}{1 - \frac{5k}{3}} = 0.6$ IM IM IM IM IM IM IM IM IM I	_			
$0.12+k=0.6 $ $k=0.48$ $\frac{Alternative solution 2}{If A \text{ and } B \text{ are independent, } P(A)P(B')=P(A\cap B') .}$ $(0.12+k)\left(\frac{5k}{3}\right)=k$ $1M$ $\frac{5k^2}{3}-0.8k=0$ $k=0.48 \text{ [or 0 (rejected)]:}$ $\frac{Alternative solution 3}{If A \text{ and } B \text{ are independent, } P(A B)=P(A B') .}$ $\therefore \frac{P(A\cap B)}{P(B)}=P(A B')$ $\frac{0.12}{1-\frac{5k}{3}}=0.6$ $1M$				
Alternative solution 2 If A and B are independent, $P(A)P(B') = P(A \cap B')$. $(0.12+k)\left(\frac{5k}{3}\right) = k$ $k = 0.48 \text{ [or 0 (rejected)]}$ Alternative solution 3 If A and B are independent, $P(A B) = P(A B')$. $\therefore \frac{P(A \cap B)}{P(B)} = P(A B')$ $\frac{0.12}{1-\frac{5k}{3}} = 0.6$ $1M$	I		1M	
If A and B are independent, $P(A)P(B') = P(A \cap B')$. $(0.12+k)\left(\frac{5k}{3}\right) = k$ $\frac{5k^2}{3} - 0.8k = 0$ $k = 0.48 \text{ [or 0 (rejected)]}$ Alternative solution 3 If A and B are independent, $P(A B) = P(A B')$. $\therefore \frac{P(A \cap B)}{P(B)} = P(A B')$ $\frac{0.12}{1 - \frac{5k}{3}} = 0.6$ IM	k	z = 0.48	1A	
If A and B are independent, $P(A)P(B') = P(A \cap B')$. $(0.12+k)\left(\frac{5k}{3}\right) = k$ $\frac{5k^2}{3} - 0.8k = 0$ $k = 0.48 \text{ [or 0 (rejected)]}$ Alternative solution 3 If A and B are independent, $P(A B) = P(A B')$. $\therefore \frac{P(A \cap B)}{P(B)} = P(A B')$ $\frac{0.12}{1 - \frac{5k}{3}} = 0.6$ IM	A	Iternative solution 2		
$\frac{5k^{2}}{3} - 0.8k = 0$ $k = 0.48 \text{ [or 0 (rejected)]}$ $\frac{\text{Alternative solution 3}}{\text{If } A \text{ and } B \text{ are independent, } P(A \mid B) = P(A \mid B') \text{ .}}$ $\therefore \frac{P(A \cap B)}{P(B)} = P(A \mid B')$ $\frac{0.12}{1 - \frac{5k}{3}} = 0.6$ $1M$	If	F A and B are independent, $P(A)P(B') = P(A \cap B')$.		
$\frac{5k^{2}}{3} - 0.8k = 0$ $k = 0.48 \text{ [or 0 (rejected)]}$ $\frac{\text{Alternative solution 3}}{\text{If } A \text{ and } B \text{ are independent, } P(A \mid B) = P(A \mid B') \text{ .}}$ $\therefore \frac{P(A \cap B)}{P(B)} = P(A \mid B')$ $\frac{0.12}{1 - \frac{5k}{3}} = 0.6$ $1M$		$(0.12 + k)(\frac{5k}{2}) - k$	1M	
$k = 0.48 \text{ or } 0 \text{ (rejected)}$ $\frac{\text{Alternative solution 3}}{\text{If } A \text{ and } B \text{ are independent, } P(A \mid B) = P(A \mid B') \text{ .}}$ $\therefore \frac{P(A \cap B)}{P(B)} = P(A \mid B')$ $\frac{0.12}{1 - \frac{5k}{3}} = 0.6$ $1M$			1111	
$k = 0.48 \text{ or } 0 \text{ (rejected)}$ $\frac{\text{Alternative solution 3}}{\text{If } A \text{ and } B \text{ are independent, } P(A \mid B) = P(A \mid B') \text{ .}}$ $\therefore \frac{P(A \cap B)}{P(B)} = P(A \mid B')$ $\frac{0.12}{1 - \frac{5k}{3}} = 0.6$ $1M$	5	$\frac{5k^2}{100} - 0.8k = 0$		
Alternative solution 3 If A and B are independent, $P(A B) = P(A B')$. $\therefore \frac{P(A \cap B)}{P(B)} = P(A B')$ $\frac{0.12}{1 - \frac{5k}{3}} = 0.6$ 1M			1.4	
If A and B are independent, $P(A \mid B) = P(A \mid B')$. $\therefore \frac{P(A \cap B)}{P(B)} = P(A \mid B')$ $\frac{0.12}{1 - \frac{5k}{3}} = 0.6$ 1M	<u></u>	, = 0.46 (of 0 (rejected))	1A	
$\therefore \frac{P(A \cap B)}{P(B)} = P(A \mid B')$ $\frac{0.12}{1 - \frac{5k}{3}} = 0.6$ 1M				
$\frac{0.12}{1 - \frac{5k}{3}} = 0.6$				
$\frac{0.12}{1 - \frac{5k}{3}} = 0.6$:	$\frac{\Gamma(A + B)}{P(B)} = P(A \mid B')$		
			111/	
	-	$\frac{1}{-5k}$ - 0.0	11VI	
ΓΑ – U.+0		3	1 1 1	
		, – V.+o	1A	
(6)			(6)]

	只 败	USE UNLT			
	Solution		Marks	Remarks	
10. (a)	$\frac{dx}{dt} = \frac{61t}{(t+1)^{\frac{5}{2}}}$ Let $u = t+1$ and hence $du = dt$.				
	The amount of alloy produced by A				
	$= \int_0^{10} \frac{61t}{(t+1)^{\frac{5}{2}}} \mathrm{d}t$		1A		
	$= \int_{1}^{11} \frac{61(u-1)}{u^{\frac{5}{2}}} \mathrm{d}u$				
	$= \int_{1}^{11} \left(61u^{\frac{-3}{2}} - 61u^{\frac{-5}{2}} \right) du$		1M		
	$= \left[-122u^{\frac{-1}{2}} + \frac{122}{3}u^{\frac{-3}{2}} \right]_{1}^{11}$		1A	For primitive function	
	Alternative Solution				
	$x = \int \frac{61t}{(t+1)^{\frac{5}{2}}} \mathrm{d}t$				
	$= \int \frac{61(u-1)}{\frac{5}{u^2}} \mathrm{d}u$		1A		
	$= \int \left(61u^{\frac{-3}{2}} - 61u^{\frac{-5}{2}}\right) du$		1M		
	$=-122u^{\frac{-1}{2}} + \frac{122}{3}u^{\frac{-3}{2}} + C$				
	$=-122(t+1)^{\frac{-1}{2}} + \frac{122}{3}(t+1)^{\frac{-3}{2}} + C$		1A		
	The amount of alloy produced by A	7			
	$ = \left[-122(10+1)^{\frac{-1}{2}} + \frac{122}{3}(10+1)^{\frac{-3}{2}} + C \right] - \left[-122 + \frac{12}{3} + C \right] $	$\left[\frac{2}{C}+C\right]$			
	≈ 45.6636		1A	$OR = \frac{244}{3} - \frac{3904}{33\sqrt{11}}$	
			(4)		
(b)	The amount of alloy produced by B $= \int_0^{10} \frac{15 \ln(t^2 + 100)}{16} dt$				
	$\approx \frac{2}{2} \cdot \frac{15}{16} \{ \ln(0+100) + \ln(10^2 + 100) + 2[\ln(2^2 + 100)] \}$		} 1M		
	+ $\ln(4^2 + 100) + \ln(6^2 + 100) + \ln(8^2 + 100)$] ≈ 45.6792		1A		
			(2)		

		So	lution				Marks	Remarks
(a)	$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}y}{\mathrm{d}t} \right) = \frac{\mathrm{d}}{\mathrm{d}t} \frac{15 \ln(t)}{t}$	+2 + 100						
(0)								
	$=\frac{15t}{8(t^2+10$						1A	
	$\frac{\mathrm{d}^2}{\mathrm{d}t^2} \left(\frac{\mathrm{d}y}{\mathrm{d}t} \right) = \frac{15}{8} \cdot \frac{(t^2)^2}{(t^2)^2}$	+100)-t(2t)						
		`						
	$=\frac{15(100)}{8(t^2+1)}$	$\frac{-t^2}{2}$					1A	
	$\therefore \frac{d^2}{dt^2} \left(\frac{dy}{dt} \right) > 0 f$	for $0 < t < 10$						
	$dt^2 \left(dt \right)$ Thus, 45.6792 is an		a of the or	ount of all	v produced b	w D	1A	
	Hence it is uncertain						/l	
	the results of (a) and	l (b). The eng	ineer canno	ot be agree	l with.		$\left \right $ $\right $ $\left \right $ $\left \right $	
							(4)	
1. (a)	$P'(t) = kte^{\frac{a}{20}t}$							
(u)	$\ln \frac{P'(t)}{t} = \frac{a}{20}t + \ln k$							
	$ \ln \frac{t}{t} = \frac{1}{20}t + \ln k $						1A	
							(1)	
(b)								
	t 1	2	3	4				
	P'(t) 22.8	3 43.43	61.97	78.60			1.4	
	$\ln \frac{P'(t)}{t} \qquad 3.13$	3.08	3.03	2.98			1A	
	$ \ln \frac{\mathbf{P}'(t)}{t} $							
	3.3							
	3.2							
		*						
	3.1							
				\downarrow				
	3.0							
	5.0				*			
							1A	
	2.9							
							,	

	只阪教師参阅 FUR TEAUTIERS	OSE ON	NLT
	Solution	Marks	Remarks
E	m the graph $a \approx 2.98 - 3.13$	1 N /	
FIO	m the graph, $\frac{a}{20} \approx \frac{2.98 - 3.13}{4 - 1}$	1M €	TC:4
<i>a</i> ≈		1A	Either one
	m the graph, $\ln k \approx 3.18$	│	
<i>K</i> ≈	24	1A	
		(5)	
		, ,	
(.) (.)	$d_{\mathbf{P}'(x)} = d\left(\frac{-t}{20}\right)$		
(c) (1)	$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{P}'(t) = \frac{\mathrm{d}}{\mathrm{d}t}\left(24te^{\frac{-t}{20}}\right)$		
	$=24e^{\frac{-t}{20}}\left(1-\frac{t}{20}\right)$	1A	
	$\therefore \frac{d}{dt}P'(t) = 0 \text{ when } t = 20$		
	ů.		
	t < 20 20 > 20		
	$\left \frac{\mathrm{d}}{\mathrm{d}t} \mathrm{P}'(t) \right + \mathrm{ve} \left 0 \right - \mathrm{ve} $	1M	
	dt		
	Alternative Solution		
	$\frac{d^2}{dt^2}P'(t) = 24e^{\frac{-t}{20}} \left[\frac{-1}{20} \left(1 - \frac{t}{20} \right) + \frac{-1}{20} \right]$		
	$=\frac{6}{5}e^{\frac{-t}{20}}\left(\frac{t}{20}-2\right)$	> 1M	
	\		
	$\therefore \frac{d^2}{dt^2} P'(t) < 0 \text{ when } t = 20$		
	dr		
	Hence the rate of change of the population size is greatest when $t = 20$.	1A	
(ii)	$\frac{d}{dt} \left(te^{\frac{-t}{20}} \right) = e^{\frac{-t}{20}} - \frac{1}{20} te^{\frac{-t}{20}}$	1A	
(11)	$dt \left(\begin{array}{c} t \\ \end{array} \right)^{-\epsilon} 20^{t\epsilon}$		
	$\frac{-t}{t}$ $\frac{-t}{t}$ $\frac{-t}{t}$		
	$24te^{\frac{-t}{20}} = 480e^{\frac{-t}{20}} - 480\frac{d}{dt} \left(te^{\frac{-t}{20}} \right)$		
	$\mathbf{u}($		
	$\int 24te^{\frac{-t}{20}} dt = -9600e^{\frac{-t}{20}} - 480te^{\frac{-t}{20}} + C$	1M	
	•	1141	
	$P(t) = C - 480te^{\frac{-t}{20}} - 9600e^{\frac{-t}{20}}$	1A	
	Since $P(0) = 30$, we have	111	
	$C - 480(0)e^{0} - 9600e^{0} = 30$	1M	
	C = 9630	1111	
	$\therefore P(t) = 9630 - 480te^{\frac{-t}{20}} - 9600e^{\frac{-t}{20}}$	1A	
(iii)	$\lim_{t \to \infty} P(t) = \lim_{t \to \infty} \left[9630 - 480te^{\frac{-t}{20}} - 9600e^{\frac{-t}{20}} \right]$		
(111)	$t \to \infty$ $t \to \infty$		
	= 9630	1A	
	\therefore the population size after a very long time is estimated to be 9630 thousands.		
		(9)	
		(2)	:

Solution (a) The estimate of the mean = $\frac{0 \times 6 + \dots + 7 \times 4}{100}$ = 3.21 (b) (i) The sample proportion of school days with less than 4 visits = $\frac{57}{100}$ (ii) An approximate 95% confidence interval for the proportion = $\left(0.57 - 1.96\sqrt{\frac{0.57 \times 0.43}{100}}, 0.57 + 1.96\sqrt{\frac{0.57 \times 0.43}{100}}\right)$ = $(0.4730, 0.6670)$ 1A (c) (i) By (a), $\lambda = 3.21$. P(crowded on a day) = $1 - e^{-3.21}\left[1 + 3.21 + \frac{3.21^2}{2!} + \frac{3.21^2}{3!}\right]$ = 0.399705729 (ii) P(crowded on a learned day 1 crowded on at least 2 days) = $\frac{(0.399705729)^3(1 - 0.399705729)^3(1 - 0.399705729)^3}{1 - (1 - 0.399705729)^3(1 - 0.399705729)^3}$ M*1M+1M M for numerator 1 M for denominator 1 M for denominator 1 M for binomial probability (6)		六败教训参阅 FOR TEACHERS	USL ON	IL I
$= 3.21$ (b) (i) The sample proportion of school days with less than 4 visits = $\frac{57}{100}$ (ii) An approximate 95% confidence interval for the proportion = $\left(0.57 - 1.96\sqrt{\frac{0.57 \times 0.43}{100}}, 0.57 + 1.96\sqrt{\frac{0.57 \times 0.43}{100}}\right)$ $= (0.4730, 0.6670)$ 1M $= (0.4730, 0.6670)$ (c) (i) By (a), $\lambda = 3.21$. $P(crowded \text{ on a day}) = 1 - e^{-3.21} \left(1 + 3.21 + \frac{3.21^2}{2!} + \frac{3.21^3}{3!}\right)$ ≈ 0.399705729 ≈ 0.3997 (ii) $P(crowded \text{ on alternate days } 1 + \frac{3.21^2}{2!} + \frac{3.21^3}{3!}\right)$ $= \frac{(0.399705729)^3(1 - 0.399705729)^2 + (1 - 0.399705729)^3(0.399705729)^2}{1 - (1 - 0.399705729)^5 - 5(1 - 0.399705729)^4(0.399705729)}$ ≈ 0.0869 1A IM For Poisson probability IM for numerator 1M for denominator 1M for denominator 1M for binomial probability			Marks	Remarks
$= 3.21$ (b) (i) The sample proportion of school days with less than 4 visits = $\frac{57}{100}$ (ii) An approximate 95% confidence interval for the proportion = $\left(0.57 - 1.96\sqrt{\frac{0.57 \times 0.43}{100}}, 0.57 + 1.96\sqrt{\frac{0.57 \times 0.43}{100}}\right)$ $= (0.4730, 0.6670)$ 1M $= (0.4730, 0.6670)$ (c) (i) By (a), $\lambda = 3.21$. $P(crowded \text{ on a day}) = 1 - e^{-3.21} \left(1 + 3.21 + \frac{3.21^2}{2!} + \frac{3.21^3}{3!}\right)$ ≈ 0.399705729 ≈ 0.3997 (ii) $P(crowded \text{ on alternate days } 1 + \frac{3.21^2}{2!} + \frac{3.21^3}{3!}\right)$ $= \frac{(0.399705729)^3(1 - 0.399705729)^2 + (1 - 0.399705729)^3(0.399705729)^2}{1 - (1 - 0.399705729)^5 - 5(1 - 0.399705729)^4(0.399705729)}$ ≈ 0.0869 1A IM For Poisson probability IM for numerator 1M for denominator 1M for denominator 1M for binomial probability	. (a)	The estimate of the mean $= \frac{0 \times 6 + \dots + 7 \times 4}{1 \times 10^{-10}}$		
(b) (i) The sample proportion of school days with less than 4 visits = $\frac{57}{100}$ (ii) An approximate 95% confidence interval for the proportion = $\left(0.57 - 1.96\sqrt{\frac{0.57 \times 0.43}{100}}, 0.57 + 1.96\sqrt{\frac{0.57 \times 0.43}{100}}\right)$ IM 1A (c) (i) By (a), $\lambda = 3.21$. P(crowded on a day) = $1 - e^{-3.21}\left(1 + 3.21 + \frac{3.21^2}{2!} + \frac{3.21^3}{3!}\right)$ ≈ 0.399705729 ≈ 0.3997 (ii) P(crowded on alternate days crowded on at least 2 days) = $\frac{(0.399705729)^3(1 - 0.399705729)^2 + (1 - 0.399705729)^3(0.399705729)^2}{1 - (1 - 0.399705729)^5 - 5(1 - 0.399705729)^4(0.399705729)}$ ≈ 0.0869 IM For Poisson probability IM for numerator IM for denominator IM for denominator IM for binomial probability	()		1 Λ	
(b) (i) The sample proportion of school days with less than 4 visits = $\frac{57}{100}$ (ii) An approximate 95% confidence interval for the proportion = $\left(0.57 - 1.96\sqrt{\frac{0.57 \times 0.43}{100}}, 0.57 + 1.96\sqrt{\frac{0.57 \times 0.43}{100}}\right)$ 1M 1A (c) (i) By (a), $\lambda = 3.21$. P(crowded on a day) = $1 - e^{-3.21}\left(1 + 3.21 + \frac{3.21^2}{2!} + \frac{3.21^3}{3!}\right)$ 1M For Poisson probability ≈ 0.399705729 ≈ 0.3997 1A (ii) P(crowded on alternate days crowded on at least 2 days) $= \frac{(0.399705729)^3(1 - 0.399705729)^2 + (1 - 0.399705729)^3(0.399705729)^2}{1 - (1 - 0.399705729)^5 - 5(1 - 0.399705729)^4(0.399705729)}$ 1M IM for numerator 1M for denominator 1M for denominator 1M for binomial probability 1A		- 3.21	IA	
(ii) An approximate 95% confidence interval for the proportion $= \begin{pmatrix} 0.57 - 1.96\sqrt{\frac{0.57 \times 0.43}{100}} & 0.57 + 1.96\sqrt{\frac{0.57 \times 0.43}{100}} \\ = (0.4730, 0.6670) & 1M \\ 1A & (3) & (3$			(1)	
(ii) An approximate 95% confidence interval for the proportion $= \begin{pmatrix} 0.57 - 1.96\sqrt{\frac{0.57 \times 0.43}{100}} & 0.57 + 1.96\sqrt{\frac{0.57 \times 0.43}{100}} \\ = (0.4730, 0.6670) & 1M \\ 1A & (3) & (3$				
(ii) An approximate 95% confidence interval for the proportion $= \begin{pmatrix} 0.57 - 1.96\sqrt{\frac{0.57 \times 0.43}{100}} & 0.57 + 1.96\sqrt{\frac{0.57 \times 0.43}{100}} \\ = (0.4730, 0.6670) & 1M \\ 1A & (3) & (3$	(b)	(i) The sample proportion of school days with less than 4 visits = $\frac{57}{100}$	1 Δ	
$= \begin{pmatrix} 0.57 - 1.96\sqrt{\frac{0.57 \times 0.43}{100}}, 0.57 + 1.96\sqrt{\frac{0.57 \times 0.43}{100}} \end{pmatrix}$ $= (0.4730, 0.6670)$ $1M$ $= (0.4730, 0.6670)$ $1A$ (3) (c) (i) By (a), $\lambda = 3.21$. $P(crowded \text{ on a day}) = 1 - e^{-3.21} \left(1 + 3.21 + \frac{3.21^2}{2!} + \frac{3.21^3}{3!} \right)$ ≈ 0.399705729 ≈ 0.3997 $1A$ (ii) $P(crowded \text{ on alternate days } crowded \text{ on at least } 2 \text{ days})$ $= \frac{(0.399705729)^3 (1 - 0.399705729)^2 + (1 - 0.399705729)^3 (0.399705729)^2}{1 - (1 - 0.399705729)^5 - 5(1 - 0.399705729)^4 (0.399705729)}$ ≈ 0.0869 IM for numerator 1M for denominator 1M for binomial probability 1M for	(0)	100		
(c) (i) By (a), $\lambda = 3.21$. $P(crowded \text{ on a day}) = 1 - e^{-3.21} \left(1 + 3.21 + \frac{3.21^2}{2!} + \frac{3.21^3}{3!} \right)$ ≈ 0.399705729 ≈ 0.3997 (ii) $P(crowded \text{ on alternate days} \mid crowded \text{ on at least 2 days})$ $= \frac{(0.399705729)^3 (1 - 0.399705729)^2 + (1 - 0.399705729)^3 (0.399705729)^2}{1 - (1 - 0.399705729)^5 - 5(1 - 0.399705729)^4 (0.399705729)}$ ≈ 0.0869 IM for numerator 1M for denominator 1M for binomial probability 1A				
(c) (i) By (a), $\lambda = 3.21$. $P(crowded \text{ on a day}) = 1 - e^{-3.21} \left(1 + 3.21 + \frac{3.21^2}{2!} + \frac{3.21^3}{3!} \right)$ ≈ 0.399705729 ≈ 0.3997 (ii) $P(crowded \text{ on alternate days} \mid crowded \text{ on at least 2 days})$ $= \frac{(0.399705729)^3 (1 - 0.399705729)^2 + (1 - 0.399705729)^3 (0.399705729)^2}{1 - (1 - 0.399705729)^5 - 5(1 - 0.399705729)^4 (0.399705729)}$ ≈ 0.0869 IM for numerator 1M for denominator 1M for binomial probability 1A		$= 0.57 - 1.96 \sqrt{\frac{0.57 \times 0.43}{100}}, 0.57 + 1.96 \sqrt{\frac{0.57 \times 0.43}{100}}$	1M	
(c) (i) By (a), $\lambda = 3.21$. $P(crowded \text{ on a day}) = 1 - e^{-3.21} \left(1 + 3.21 + \frac{3.21^2}{2!} + \frac{3.21^3}{3!} \right)$ ≈ 0.399705729 ≈ 0.3997 (ii) $P(crowded \text{ on alternate days } crowded \text{ on at least 2 days})$ $= \frac{(0.399705729)^3 (1 - 0.399705729)^2 + (1 - 0.399705729)^3 (0.399705729)^2}{1 - (1 - 0.399705729)^5 - 5(1 - 0.399705729)^4 (0.399705729)}$ ≈ 0.0869 IM for numerator 1M for denominator 1M for binomial probability		,	1A	
(c) (i) By (a), $\lambda = 3.21$. $P(crowded \text{ on a day}) = 1 - e^{-3.21} \left(1 + 3.21 + \frac{3.21^2}{2!} + \frac{3.21^3}{3!} \right)$ ≈ 0.399705729 ≈ 0.3997 (ii) $P(crowded \text{ on alternate days } crowded \text{ on at least } 2 \text{ days})$ $= \frac{(0.399705729)^3 (1 - 0.399705729)^2 + (1 - 0.399705729)^3 (0.399705729)^2}{1 - (1 - 0.399705729)^5 - 5(1 - 0.399705729)^4 (0.399705729)}$ ≈ 0.0869 IM for numerator 1M for denominator 1M for binomial probability				
P(crowded on a day) = $1 - e^{-3.21} \left(1 + 3.21 + \frac{3.21^2}{2!} + \frac{3.21^3}{3!} \right)$ IM For Poisson probability ≈ 0.399705729 ≈ 0.3997 (ii) P(crowded on alternate days crowded on at least 2 days) $= \frac{(0.399705729)^3 (1 - 0.399705729)^2 + (1 - 0.399705729)^3 (0.399705729)^2}{1 - (1 - 0.399705729)^5 - 5(1 - 0.399705729)^4 (0.399705729)}$ ≈ 0.0869 IM for numerator 1M for denominator 1M for denominator 1M for binomial probability			(3)	
P(crowded on a day) = $1 - e^{-3.21} \left(1 + 3.21 + \frac{3.21^2}{2!} + \frac{3.21^3}{3!} \right)$ IM For Poisson probability ≈ 0.399705729 ≈ 0.3997 (ii) P(crowded on alternate days crowded on at least 2 days) $= \frac{(0.399705729)^3 (1 - 0.399705729)^2 + (1 - 0.399705729)^3 (0.399705729)^2}{1 - (1 - 0.399705729)^5 - 5(1 - 0.399705729)^4 (0.399705729)}$ ≈ 0.0869 IM for numerator 1M for denominator 1M for denominator 1M for binomial probability				
≈ 0.399705729 ≈ 0.3997 (ii) P(crowded on alternate days crowded on at least 2 days) $= \frac{(0.399705729)^3 (1 - 0.399705729)^2 + (1 - 0.399705729)^3 (0.399705729)^2}{1 - (1 - 0.399705729)^5 - 5(1 - 0.399705729)^4 (0.399705729)}$ ≈ 0.0869 1M for numerator 1M for denominator 1M for binomial probability 1	(c)			
≈ 0.399705729 ≈ 0.3997 (ii) P(crowded on alternate days crowded on at least 2 days) $= \frac{(0.399705729)^3 (1 - 0.399705729)^2 + (1 - 0.399705729)^3 (0.399705729)^2}{1 - (1 - 0.399705729)^5 - 5(1 - 0.399705729)^4 (0.399705729)}$ ≈ 0.0869 1M for numerator 1M for denominator 1M for binomial probability 1		P(crowded on a day) = $1 - e^{-3.21} \left(1 + 3.21 + \frac{3.21^2}{21} + \frac{3.21^3}{21} \right)$	1M	For Poisson probability
≈ 0.3997 (ii) P(crowded on alternate days crowded on at least 2 days) $= \frac{(0.399705729)^3 (1 - 0.399705729)^2 + (1 - 0.399705729)^3 (0.399705729)^2}{1 - (1 - 0.399705729)^5 - 5(1 - 0.399705729)^4 (0.399705729)}$ ≈ 0.0869 1A IM for numerator 1M for denominator 1M for binomial probability 1M for binomi		,		
(ii) P(crowded on alternate days crowded on at least 2 days) $= \frac{(0.399705729)^3 (1 - 0.399705729)^2 + (1 - 0.399705729)^3 (0.399705729)^2}{1 - (1 - 0.399705729)^5 - 5(1 - 0.399705729)^4 (0.399705729)}$ ≈ 0.0869 1M for numerator 1M for denominator 1M for binomial probability			1A	
$= \frac{(0.399705729)^3 (1 - 0.399705729)^2 + (1 - 0.399705729)^3 (0.399705729)^2}{1 - (1 - 0.399705729)^5 - 5(1 - 0.399705729)^4 (0.399705729)}$ ≈ 0.0869 IM for numerator 1M for denominator 1M for binomial probability 1M for				
≈ 0.0869 1A		(ii) P(crowded on alternate days crowded on at least 2 days) $(0.200705720)^3 (1.0.200705720)^2 + (1.0.200705720)^3 (0.200705720)^2$		1M for numerator
≈ 0.0869 1A		$=\frac{(0.399703729)(1-0.399703729)+(1-0.399703729)(0.399703729)}{1-(1-0.399705729)^5-5(1-0.399705729)^4(0.399705729)}$	1M+1M+1M	
			1A	TWI for dinomial probabilit
			(6)	
			(6)	

六败教训参阅	FOR TEACHERS	OOL OI	VL I
Solution		Marks	Remarks
Let X_r minutes and X_e minutes be the waiting times for	or a customer in the regular		
and express counter respectively.			
(a) $P(X_r > 6) = P\left(Z > \frac{6 - 6.6}{1.2}\right)$		1M	
		11.1	
= P(Z > -0.5)			
≈ 0.6915		1A	
	-	(2)	
4) 4) 8			
(b) (i) P(more than 10 from 12 customers with $X_r > 0$)		
$= C_{11}^{12} (0.6915)^{11} (1 - 0.6915) + (0.6915)^{12}$		1M+1M	
≈ 0.0759		1A	
(ii) Let Y minutes be the average waiting time of the	the 12 customers		
	A10 12 0 000011010		
$Y \sim N\left(6.6, \frac{1.2^2}{12}\right) = N(6.6, 0.12)$		1A	
$P(Y > 6) = P\left(Z > \frac{6 - 6.6}{\sqrt{0.12}}\right)$			
$\approx P(Z > -1.73)$			OR $P(Z > -1.732)$
≈ 0.9582		1A	OR 1(2 > 1.732) OR 0.9584
0.5502		121	OR 0.9301
		(5)	
(c) (i) $P(X_r < k) = 0.2119$			
		13.7	
$P\left(Z < \frac{k - 6.6}{1.2}\right) = 0.2119$		1M	
$\frac{k-6.6}{1.2} = -0.8$			
1.2			
k = 5.64 P($X_e > k$) = 0.0359		1A	
$(A_e > k) = 0.0339$			
$P\left(Z > \frac{5.64 - \mu}{0.8}\right) = 0.0359$		1 M	
$\frac{5.64 - \mu}{0.8} = 1.8$			
$\mu = 4.2$		1A	
(12 (()			
(ii) $P(X_r > \mu) = P\left(Z > \frac{4.2 - 6.6}{1.2}\right)$			
(1.2) ≈ 0.9772		1A	
P(1 customer pays at regular counter 2 custom	ners wait more than μ min)	174	
2(0.88)(0.9772)(0.12)(0.5)	, ,	134 . 134	1M for numerator
$\approx \frac{2(0.88)(0.9772) + (0.12)(0.5)}{[(0.88)(0.9772) + (0.12)(0.5)]^2}$		1M+1M	1M for denominator
≈ 0.1219		1A	
		(0)	
	-	(8)	