

HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY
HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2021

MATHEMATICS Extended Part Module 2 (Algebra and Calculus) Question-Answer Book

 $8:30 \text{ am} - 11:00 \text{ am} (2\frac{1}{2} \text{ hours})$ This paper must be answered in English

INSTRUCTIONS

- (1) After the announcement of the start of the examination, you should first write your Candidate Number in the space provided on Page 1 and stick barcode labels in the spaces provided on Pages 1, 3, 5, 7, 9, 11 and 13.
- (2) This paper consists of TWO sections, A and B.
- (3) Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- (4) Graph paper and supplementary answer sheets will be supplied on request. Write your Candidate Number, mark the question number box and stick a barcode label on each sheet, and fasten them with string INSIDE this book.
- (5) Unless otherwise specified, all working must be clearly shown.
- (6) Unless otherwise specified, numerical answers must be exact.
- (7) No extra time will be given to candidates for sticking on the barcode labels or filling in the question number boxes after the 'Time is up' announcement.

©香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2021

Please stick the barcode label here.
Candidate Number

FORMULAS FOR REFERENCE

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$cos(A \pm B) = cos A cos B \mp sin A sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$2\sin A\cos B = \sin (A+B) + \sin (A-B)$$

$$2\cos A\cos B = \cos(A+B) + \cos(A-B)$$

$$2\sin A\sin B = \cos(A - B) - \cos(A + B)$$

$$\sin A + \sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

SECTION A (50 marks)

not be marked	1.	Let $f(x) = \frac{1}{3x^2 + 4}$. Find $f'(x)$ from first principles.	(4 marks)
will n			
margins '			
e mar			
in the			
written			
Answers			

Answers written in the margins will not be marked.

Please stick the barcode label here.

Using mathematical induction, prove that $\sum_{k=1}^{n} (3k^5 + k^3) = \frac{n^3(n+1)^3}{2}$ for all positive integers	n .
^-1	(5 marks
·	

Please stick the barcode label here.

(b) Solve the equation $\cos 4\theta + \cos 8\theta + \cos 12\theta = -1$, where $0 \le \theta \le \frac{\pi}{2}$.	(6 mark
	(6 mark
	4
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	-1111111111
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(a)	Find the asymptote(s) of the graph of $y = r(x)$.	
(a)	This the asymptotic(s) of the graph of y 1(s)	
(b)	Find $\frac{d}{dx}r(x)$.	
(0)	$dx^{1(3)}$	
(c)	Someone claims that there is only one point of inflexion of the graph of $y=r$	(r) Do
(0)	agree? Explain your answer.	(x) . DC
		(7 m

		-

***************************************		***************************************
***************************************		••••••

(a)	c;
(b)	the area of the region bounded by L , Γ and the straight line $x=c$. (7 mark

(a)	Using integration by parts, find $\int (\ln x)^2 dx$.
(b)	Consider the curve $C: y = \sqrt{x} \ln(x^2 + 1)$, where $x \ge 0$. Let R be the region bounded by C the straight line $x = 1$ and the x -axis. Find the volume of the solid of revolution generated by revolving R about the x -axis. (7 mark

Cons	sider the system of linear equations in real variables x , y , z
	(E): $\begin{cases} x + (d-1)y + (d+3)z = 4-d \\ 2x + (d+2)y - z = 2d-5, \text{ where } d \in \mathbb{R} \\ 3x + (d+4)y + 5z = 2 \end{cases}$
It is	given that (E) has infinitely many solutions.
(a)	Find d . Hence, solve (E) .
(b)	Someone claims that (E) has a real solution (x, y, z) satisfying $xy + 2xz = 3$. Is the claim correct? Explain your answer. (8 marks
	•

- 9. (a) Let $\frac{-\pi}{2} < \theta < \frac{\pi}{2}$.
 - (i) Find $\frac{d}{d\theta} \ln(\sec \theta + \tan \theta)$.
 - (ii) Using the result of (a)(i), find $\int \sec \theta \, d\theta$. Hence, find $\int \sec^3 \theta \, d\theta$.

(4 marks)

(b) Let g(x) and h(x) be continuous functions defined on \mathbf{R} such that g(x) + g(-x) = 1 and h(x) = h(-x) for all $x \in \mathbf{R}$.

Using integration by substitution, prove that $\int_{-a}^{a} g(x)h(x)dx = \int_{0}^{a} h(x)dx \text{ for any } a \in \mathbf{R}.$

(3 marks)

Answers written in the margins will not be marked.

(c) Evaluate $\int_{-1}^{1} \frac{3^{x} x^{2}}{(3^{x} + 3^{-x})\sqrt{x^{2} + 1}} dx .$ (5 marks)

14

10.	wher the p	e $0 < z$ oint Q	graph of $y = \sqrt{x^2 + 36}$ and the graph of $y = -\sqrt{(20 - x)^2 + 16}$ by F and $x < 20$. Let P be a moving point on F . The vertical line passing through Q . Denote the x -coordinate of P by u . It is given that the length of alue when $u = a$.	gh P cuts G at
	(a)	Find	<i>a</i> .	(4 marks)
	(b)	The l	horizontal line passing through P cuts the y -axis at the point R while then Q cuts the y -axis at the point S .	e horizontal line
		(i)	Someone claims that the area of the rectangle $PQSR$ attains its when $u = a$. Do you agree? Explain your answer.	minimum value
		(ii)	The length of OP increases at a constant rate of 28 units per minute. change of the perimeter of the rectangle $PQSR$ when $u = a$.	Find the rate of (9 marks)
j				

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

- 11. Define $P = \begin{pmatrix} \sin \theta & \cos \theta \\ -\cos \theta & \sin \theta \end{pmatrix}$, where $\frac{\pi}{2} < \theta < \pi$.
 - (a) Let $A = \begin{pmatrix} \alpha & \beta \\ \beta & -\alpha \end{pmatrix}$, where $\alpha, \beta \in \mathbf{R}$. Prove that $PAP^{-1} = \begin{pmatrix} -\alpha \cos 2\theta + \beta \sin 2\theta & -\beta \cos 2\theta - \alpha \sin 2\theta \\ -\beta \cos 2\theta - \alpha \sin 2\theta & \alpha \cos 2\theta - \beta \sin 2\theta \end{pmatrix}$. (3 marks)
 - (b) Let $B = \begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$.
 - (i) Find θ such that $PBP^{-1} = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$, where $\lambda, \mu \in \mathbb{R}$.
 - (ii) Using the result of (b)(i), prove that $B^n = 2^{n-2} \begin{pmatrix} (-1)^n + 3 & \sqrt{3}(-1)^{n+1} + \sqrt{3} \\ \sqrt{3}(-1)^{n+1} + \sqrt{3} & 3(-1)^n + 1 \end{pmatrix}$ for any positive integer n.
 - (iii) Evaluate $(B^{-1})^{555}$.

(9	marks)
----	--------

	• "	

