HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2022 ## MATHEMATICS Extended Part Module 2 (Algebra and Calculus) Question-Answer Book $8:30 \text{ am} - 11:00 \text{ am} \ (2\frac{1}{2} \text{ hours})$ This paper must be answered in English ## INSTRUCTIONS - (1) After the announcement of the start of the examination, you should first write your Candidate Number in the space provided on Page 1 and stick barcode labels in the spaces provided on Pages 1, 3, 5, 7, 9, 11 and 13. - (2) This paper consists of TWO sections, A and B. - (3) Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked. - (4) Graph paper and supplementary answer sheets will be supplied on request. Write your Candidate Number, mark the question number box and stick a barcode label on each sheet, and fasten them with string INSIDE this book. - (5) Unless otherwise specified, all working must be clearly shown. - (6) Unless otherwise specified, numerical answers must be exact. - (7) No extra time will be given to candidates for sticking on the barcode labels or filling in the question number boxes after the 'Time is up' announcement. ©香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2022 | F | Please | stick | the | e ba | arc | od | e la | abe | el h | ere | €. | |----|---------|-------|-----|------|-----|----|------|-----|------|-----|----| Ca | ndidate | Numbe | r | | | | | | | | | ## FORMULAS FOR REFERENCE $$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$ $$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$ $$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$ $$2\sin A\cos B = \sin(A+B) + \sin(A-B)$$ $$2\cos A\cos B = \cos(A+B) + \cos(A-B)$$ $$2\sin A\sin B = \cos(A-B) - \cos(A+B)$$ $$\sin A + \sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}$$ $$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$$ $$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$ $$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$ ## **SECTION A (50 marks)** | 1. | Let $g(x)$ | $=\frac{1}{\sqrt{5x+4}},$ | where $x > 0$ | . Prove that | g(1+h)-g(1) | $=\frac{-5h}{3\sqrt{5h+9}(3+\sqrt{5h+9})}$ | – . Hence, | |----|--------------|---------------------------|--|---|--|--|--| | | find $g'(1)$ | from first prin | nciples. | | | | (4 marks) | | | | | | | | | | | , | 1. | 1. Let g(x) find g'(1) | 1. Let $g(x) = \frac{1}{\sqrt{5x+4}}$, find $g'(1)$ from first prin | 1. Let $g(x) = \frac{1}{\sqrt{5x+4}}$, where $x > 0$ find $g'(1)$ from first principles. | 1. Let $g(x) = \frac{1}{\sqrt{5x+4}}$, where $x > 0$. Prove that find $g'(1)$ from first principles. | 1. Let $g(x) = \frac{1}{\sqrt{5x+4}}$, where $x > 0$. Prove that $g(1+h) - g(1)$ find $g'(1)$ from first principles. | 1. Let $g(x) = \frac{1}{\sqrt{5x+4}}$, where $x > 0$. Prove that $g(1+h) - g(1) = \frac{-5h}{3\sqrt{5h+9}(3+\sqrt{5h+9})}$ find $g'(1)$ from first principles. | 2 | Let $\frac{\pi}{4} < \theta < \frac{\pi}{2}$. | | |--|-------| | (a) Prove that $\frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = 1 + \sec \theta \csc \theta$. | | | (b) Solve the equation $\frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = 5.$ | | | $1-\cot\theta$ $1-\tan\theta$ | (5 ma | (| a) | Using mathematical induction, prove that $\sum_{k=1}^{2n} (-1)^k k^2 = n(2n+1)$ for all positive integrations. | gers n. | |-----|---|--|---------| | (1 | b) | Using (a), evaluate $\sum_{k=11}^{100} (-1)^k k^2$. | | | | | | (7 mark | | | | | | | | *************************************** | | | | ••• | ••••••••••••••••••••••••••••••••••••••• | | | | ••• | 7 | | |--|---| | narke | | | ot be n | | | will not | | | written in the margins will not be marke | | | in the | | | Ξ. | l | | written | - | | Answers w | | | (a) | Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$. | |-----|--| | (b) | Someone claims that there are two points of inflexion of the graph of $y = (7x - 2x^2)e^{-x}$. Do y agree? Explain your answer. (6 mark | (a) | Explain why a is a negative number and n is an odd number. | |---|--| | | | | (b) | Let $(bx-1)^n = \sum_{k=0}^n \lambda_k x^k$, where b is a constant. If $\lambda_0 = \mu_0$ and $\lambda_1 = 2\mu_1$, find a, b a | | | $\overline{k}=0$ (6 1) | | | | | | | | | | | | | | *************************************** | | | *************************************** | | | | | | | | | | | | | | | | | | *************************************** | ••••• | | | | | | | | | *************************************** | | | | | | | | | ••••• | | | | | | | | | | | | 6. | (a) | Using integration by substitution, prove that $\int \frac{1}{x^2 + 2x + 5} dx = \frac{1}{2} \tan^{-1} \left(\frac{x+1}{2} \right) + \text{constant} .$ | |----|-----|---| | | (b) | At any point (x, y) on the curve G , the slope of the tangent to G is $\frac{2x+1}{x^2+2x+5}$. Given that G passes through the point $\left(-3, \ln 2\right)$, does G pass through the point $\left(-1, \frac{-\pi}{8}\right)$? Explain your | | | | answer. (7 marks) | 7. | its x- | Consider the curve $\Gamma: y = \ln(x+2)$, where $x > 0$. Let P be a moving point on Γ with h as its x -coordinate. Denote the tangent to Γ at P by L and the area of the region bounded by Γ , L and the y -axis by A square units. | | | | | | | |---|--------|---|--|--|--|--|--|--| | | (a) | Prove that $A = \frac{h^2 + 4h}{2h + 4} - 2\ln(h + 2) + 2\ln 2$. | | | | | | | | | (b) | If $h=3^{-t}$, where t is the time measured in seconds, find the rate of change of A when $t=1$. (8 marks) | | | | | | | | | | | | | | | | | | | - | | | | | | | | | e marked. | | | | | | | | | | S WIII IIOL DE | | | | | | | | | | me margins | | | | | | | | | | Ausweis written in the margins win not be marked. | | | | | | | | | | Allswers | 7. | | (E): $\begin{cases} ax + 2y - z = 4k \\ -x + ay + 2z = 4 \\ 2x - y + az = k^2 \end{cases}$, where $a, k \in \mathbb{R}$. | | |-----|--|---| | | (E): $\begin{cases} -x + ay + 2z = 4, \text{ where } a, k \in \mathbb{R}. \end{cases}$ | | | | | | | (a) | Assume that (E) has a unique solution. Express y in terms of a and k . | | | (b) | Assume that (E) has infinitely many solutions. Solve (E) . | | | | (=) (=) | (| SEC | CTION B (50 marks) | .* F | | |-----|---|---|----------------------------------| | 9. | Let $f(x) = \frac{x^2 + 3x}{x - 1}$, where $x \ne 1$ | 1. Denote the graph of $y = f(x)$ by H . | | | | (a) Find the asymptote(s) of H | \mathcal{H} . | (3 marks) | | | (b) Find the maximum point(s) |) and minimum point(s) of H . | (4 marks) | | | (c) Sketch H . | | (3 marks) | | | | ded by H and the straight line $y = 10$. Find the volving R about the straight line $y = 10$. | volume of the solid of (3 marks) | _ | - | | | | | | | | | | | | | | | | | 10. Let $g(x) = \cos^2 x \cos 2x$. | | |---|--| | (a) Prove that $\int g(x) dx = \frac{\sin 2x \cos^2 x}{2} + \frac{1}{2} \int \sin 2x \cos^2 x dx$ | $n^2 2x dx . (2 marks)$ | | (b) Evaluate $\int_0^{\pi} g(x) dx$. | (2 marks) | | (c) Using integration by substitution, evaluate | $\int_0^{\pi} x g(x) dx . (4 marks)$ | | (d) Evaluate $\int_{-\pi}^{2\pi} x g(x) dx$. | (4 marks) | - Let n be a positive integer. Denote the 2×2 identity matrix by I. (a) - Let A be a 2×2 matrix. Simplify $(I-A)(I+A+A^2+\cdots+A^n)$. - Let $A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$, where θ is not a multiple of 2π . It is given that $A^n = \begin{pmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{pmatrix}$. - Prove that $(I A)^{-1} = \frac{1}{2\sin\frac{\theta}{2}} \begin{pmatrix} \sin\frac{\theta}{2} & -\cos\frac{\theta}{2} \\ \cos\frac{\theta}{2} & \sin\frac{\theta}{2} \end{pmatrix}$. - (2) Using the result of (a)(i) and (a)(ii)(1), prove that $I + A + A^2 + \dots + A^n = \frac{\sin\frac{(n+1)\theta}{2}}{\sin\frac{\theta}{2}} \begin{pmatrix} \cos\frac{n\theta}{2} & -\sin\frac{n\theta}{2} \\ \sin\frac{n\theta}{2} & \cos\frac{n\theta}{2} \end{pmatrix}$. (7 marks) Using (a)(ii), evaluate (b) (i) $$\cos \frac{5\pi}{18} + \cos \frac{5\pi}{9} + \cos \frac{5\pi}{6} + \dots + \cos 25\pi$$; (ii) $$\cos^2 \frac{\pi}{7} + \cos^2 \frac{2\pi}{7} + \cos^2 \frac{3\pi}{7} + \dots + \cos^2 7\pi$$. (6 marks) Answers written in the margins will not be marked. | | 1 | |--|---| | | 1 | | | 1 | Answers written in the margins will not be marked. 11. (a) Let D be a point lying on BC so Consider $\triangle ABC$. Denote the origin by O. - (a) Let D be a point lying on BC such that AD is the angle bisector of $\angle BAC$. Define BC = a, AC = b and AB = c. - (i) Using the fact that BD: DC = c: b, prove that $\overrightarrow{AD} = -\overrightarrow{OA} + \frac{b}{b+c}\overrightarrow{OB} + \frac{c}{b+c}\overrightarrow{OC}$. - (ii) Let E be a point lying on AC such that BE is the angle bisector of $\angle ABC$. Define $\overrightarrow{OJ} = \frac{a}{a+b+c} \overrightarrow{OA} + \frac{b}{a+b+c} \overrightarrow{OB} + \frac{c}{a+b+c} \overrightarrow{OC}$. Prove that J lies on AD. Hence, deduce that AD and BE intersect at J. (7 marks) - (b) Suppose that $\overrightarrow{OA} = 35\mathbf{i} + 9\mathbf{j} + \mathbf{k}$, $\overrightarrow{OB} = 40\mathbf{i} 3\mathbf{j} + \mathbf{k}$ and $\overrightarrow{OC} = -3\mathbf{j} + \mathbf{k}$. Let *I* be the incentre of $\triangle ABC$. - (i) Find \overrightarrow{OI} . - (ii) By considering $\overrightarrow{AI} \times \overrightarrow{AB}$, find the radius of the inscribed circle of $\triangle ABC$. (5 marks) Answers written in the margins will not be marked. | |
 | | |------|------|------| | | | | | | | | | | | | |
 |
 |
 | | | | | |
 |
 | | | | | | | | | | | | | | | |
 |
 | | | | | | | |
 | | | | | |
 |
 |
 | | | | | | | |
 | | | | | |
 |
 |
 | | | | | |
 |
 |
 |
 |
 | | | | | | | | | Answers written in the margins will not be marked. 12.