

HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY
HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2022

## MATHEMATICS Extended Part Module 2 (Algebra and Calculus) Question-Answer Book

 $8:30 \text{ am} - 11:00 \text{ am} \ (2\frac{1}{2} \text{ hours})$  This paper must be answered in English

## INSTRUCTIONS

- (1) After the announcement of the start of the examination, you should first write your Candidate Number in the space provided on Page 1 and stick barcode labels in the spaces provided on Pages 1, 3, 5, 7, 9, 11 and 13.
- (2) This paper consists of TWO sections, A and B.
- (3) Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- (4) Graph paper and supplementary answer sheets will be supplied on request. Write your Candidate Number, mark the question number box and stick a barcode label on each sheet, and fasten them with string INSIDE this book.
- (5) Unless otherwise specified, all working must be clearly shown.
- (6) Unless otherwise specified, numerical answers must be exact.
- (7) No extra time will be given to candidates for sticking on the barcode labels or filling in the question number boxes after the 'Time is up' announcement.

©香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2022

| F  | Please  | stick | the | e ba | arc | od | e la | abe | el h | ere | €. |
|----|---------|-------|-----|------|-----|----|------|-----|------|-----|----|
|    |         |       |     |      |     |    |      |     |      |     |    |
|    |         |       |     |      |     |    |      |     |      |     |    |
| Ca | ndidate | Numbe | r   |      |     |    |      |     |      |     |    |



## FORMULAS FOR REFERENCE

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$2\sin A\cos B = \sin(A+B) + \sin(A-B)$$

$$2\cos A\cos B = \cos(A+B) + \cos(A-B)$$

$$2\sin A\sin B = \cos(A-B) - \cos(A+B)$$

$$\sin A + \sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

## **SECTION A (50 marks)**

| 1. | Let $g(x)$   | $=\frac{1}{\sqrt{5x+4}},$ | where $x > 0$                                                        | . Prove that                                                                              | g(1+h)-g(1)                                                                                            | $=\frac{-5h}{3\sqrt{5h+9}(3+\sqrt{5h+9})}$                                                                             | – . Hence,                                                                                                                                                       |
|----|--------------|---------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | find $g'(1)$ | from first prin           | nciples.                                                             |                                                                                           |                                                                                                        |                                                                                                                        | (4 marks)                                                                                                                                                        |
|    |              |                           |                                                                      |                                                                                           |                                                                                                        |                                                                                                                        |                                                                                                                                                                  |
| ,  |              |                           |                                                                      |                                                                                           |                                                                                                        |                                                                                                                        |                                                                                                                                                                  |
|    |              |                           |                                                                      |                                                                                           |                                                                                                        |                                                                                                                        |                                                                                                                                                                  |
|    |              |                           |                                                                      |                                                                                           |                                                                                                        |                                                                                                                        |                                                                                                                                                                  |
|    | 1.           | 1. Let g(x) find g'(1)    | 1. Let $g(x) = \frac{1}{\sqrt{5x+4}}$ , find $g'(1)$ from first prin | 1. Let $g(x) = \frac{1}{\sqrt{5x+4}}$ , where $x > 0$ find $g'(1)$ from first principles. | 1. Let $g(x) = \frac{1}{\sqrt{5x+4}}$ , where $x > 0$ . Prove that find $g'(1)$ from first principles. | 1. Let $g(x) = \frac{1}{\sqrt{5x+4}}$ , where $x > 0$ . Prove that $g(1+h) - g(1)$ find $g'(1)$ from first principles. | 1. Let $g(x) = \frac{1}{\sqrt{5x+4}}$ , where $x > 0$ . Prove that $g(1+h) - g(1) = \frac{-5h}{3\sqrt{5h+9}(3+\sqrt{5h+9})}$ find $g'(1)$ from first principles. |

2

| Let $\frac{\pi}{4} < \theta < \frac{\pi}{2}$ .                                                                             |       |
|----------------------------------------------------------------------------------------------------------------------------|-------|
| (a) Prove that $\frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = 1 + \sec \theta \csc \theta$ . |       |
| (b) Solve the equation $\frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = 5.$                    |       |
| $1-\cot\theta$ $1-\tan\theta$                                                                                              | (5 ma |
|                                                                                                                            |       |
|                                                                                                                            |       |
|                                                                                                                            |       |
|                                                                                                                            |       |
|                                                                                                                            |       |
|                                                                                                                            |       |
|                                                                                                                            |       |
|                                                                                                                            |       |
|                                                                                                                            |       |
|                                                                                                                            |       |
|                                                                                                                            |       |
|                                                                                                                            |       |
|                                                                                                                            |       |
|                                                                                                                            |       |
|                                                                                                                            |       |
|                                                                                                                            |       |
|                                                                                                                            |       |
|                                                                                                                            |       |
|                                                                                                                            |       |
|                                                                                                                            |       |
|                                                                                                                            |       |

| (   | a)                                      | Using mathematical induction, prove that $\sum_{k=1}^{2n} (-1)^k k^2 = n(2n+1)$ for all positive integrations. | gers n. |
|-----|-----------------------------------------|----------------------------------------------------------------------------------------------------------------|---------|
| (1  | b)                                      | Using (a), evaluate $\sum_{k=11}^{100} (-1)^k k^2$ .                                                           |         |
|     |                                         |                                                                                                                | (7 mark |
|     |                                         |                                                                                                                |         |
|     | *************************************** |                                                                                                                |         |
| ••• | ••••••••••••••••••••••••••••••••••••••• |                                                                                                                |         |
| ••• |                                         |                                                                                                                |         |
|     |                                         |                                                                                                                |         |
|     |                                         |                                                                                                                |         |
|     |                                         |                                                                                                                |         |
|     |                                         |                                                                                                                |         |
|     |                                         |                                                                                                                |         |
|     |                                         |                                                                                                                |         |
|     |                                         |                                                                                                                |         |
|     |                                         |                                                                                                                |         |
|     |                                         |                                                                                                                |         |
|     |                                         |                                                                                                                |         |
|     |                                         |                                                                                                                |         |
|     |                                         |                                                                                                                |         |
|     |                                         |                                                                                                                |         |
|     |                                         |                                                                                                                |         |
|     |                                         |                                                                                                                |         |
|     |                                         |                                                                                                                |         |
|     |                                         |                                                                                                                |         |
|     |                                         |                                                                                                                |         |

| 7                                        |   |
|------------------------------------------|---|
| narke                                    |   |
| ot be n                                  |   |
| will not                                 |   |
| written in the margins will not be marke |   |
| in the                                   |   |
| Ξ.                                       | l |
| written                                  | - |
| Answers w                                |   |

| (a) | Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ .                                                                                           |
|-----|------------------------------------------------------------------------------------------------------------------------------------------|
| (b) | Someone claims that there are two points of inflexion of the graph of $y = (7x - 2x^2)e^{-x}$ . Do y agree? Explain your answer. (6 mark |
|     |                                                                                                                                          |
|     |                                                                                                                                          |
|     |                                                                                                                                          |
|     |                                                                                                                                          |
|     |                                                                                                                                          |
|     |                                                                                                                                          |
|     |                                                                                                                                          |
|     |                                                                                                                                          |

| (a)                                     | Explain why $a$ is a negative number and $n$ is an odd number.                                                                     |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
|                                         |                                                                                                                                    |
| (b)                                     | Let $(bx-1)^n = \sum_{k=0}^n \lambda_k x^k$ , where b is a constant. If $\lambda_0 = \mu_0$ and $\lambda_1 = 2\mu_1$ , find a, b a |
|                                         | $\overline{k}=0$ (6 1)                                                                                                             |
|                                         |                                                                                                                                    |
|                                         |                                                                                                                                    |
|                                         |                                                                                                                                    |
|                                         |                                                                                                                                    |
| *************************************** |                                                                                                                                    |
| *************************************** |                                                                                                                                    |
|                                         |                                                                                                                                    |
|                                         |                                                                                                                                    |
|                                         |                                                                                                                                    |
|                                         |                                                                                                                                    |
|                                         |                                                                                                                                    |
| *************************************** |                                                                                                                                    |
|                                         |                                                                                                                                    |
|                                         |                                                                                                                                    |
|                                         |                                                                                                                                    |
|                                         |                                                                                                                                    |
|                                         |                                                                                                                                    |
|                                         |                                                                                                                                    |
|                                         |                                                                                                                                    |
|                                         |                                                                                                                                    |
| •••••                                   |                                                                                                                                    |
|                                         |                                                                                                                                    |
|                                         |                                                                                                                                    |
| *************************************** |                                                                                                                                    |
|                                         |                                                                                                                                    |
|                                         |                                                                                                                                    |
| •••••                                   |                                                                                                                                    |
|                                         |                                                                                                                                    |
|                                         |                                                                                                                                    |
|                                         |                                                                                                                                    |

| 6. | (a) | Using integration by substitution, prove that $\int \frac{1}{x^2 + 2x + 5} dx = \frac{1}{2} \tan^{-1} \left( \frac{x+1}{2} \right) + \text{constant} .$                                                                                                   |
|----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (b) | At any point $(x, y)$ on the curve $G$ , the slope of the tangent to $G$ is $\frac{2x+1}{x^2+2x+5}$ . Given that $G$ passes through the point $\left(-3, \ln 2\right)$ , does $G$ pass through the point $\left(-1, \frac{-\pi}{8}\right)$ ? Explain your |
|    |     | answer. (7 marks)                                                                                                                                                                                                                                         |
|    |     |                                                                                                                                                                                                                                                           |
|    |     |                                                                                                                                                                                                                                                           |
|    |     |                                                                                                                                                                                                                                                           |
|    |     |                                                                                                                                                                                                                                                           |
|    |     |                                                                                                                                                                                                                                                           |
|    |     |                                                                                                                                                                                                                                                           |
|    |     |                                                                                                                                                                                                                                                           |
|    |     |                                                                                                                                                                                                                                                           |
|    |     |                                                                                                                                                                                                                                                           |
|    |     |                                                                                                                                                                                                                                                           |
|    |     |                                                                                                                                                                                                                                                           |
|    |     |                                                                                                                                                                                                                                                           |
|    |     |                                                                                                                                                                                                                                                           |
|    |     |                                                                                                                                                                                                                                                           |

| 7.                                                | its x- | Consider the curve $\Gamma: y = \ln(x+2)$ , where $x > 0$ . Let $P$ be a moving point on $\Gamma$ with $h$ as its $x$ -coordinate. Denote the tangent to $\Gamma$ at $P$ by $L$ and the area of the region bounded by $\Gamma$ , $L$ and the $y$ -axis by $A$ square units. |  |  |  |  |  |  |
|---------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                                                   | (a)    | Prove that $A = \frac{h^2 + 4h}{2h + 4} - 2\ln(h + 2) + 2\ln 2$ .                                                                                                                                                                                                           |  |  |  |  |  |  |
|                                                   | (b)    | If $h=3^{-t}$ , where t is the time measured in seconds, find the rate of change of A when $t=1$ . (8 marks)                                                                                                                                                                |  |  |  |  |  |  |
|                                                   |        |                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|                                                   | -      |                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| e marked.                                         |        |                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| S WIII IIOL DE                                    |        |                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| me margins                                        |        |                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| Ausweis written in the margins win not be marked. |        |                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| Allswers                                          |        |                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|                                                   |        |                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|                                                   |        |                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|                                                   |        |                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|                                                   |        |                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|                                                   |        |                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |

7.

|     | (E): $\begin{cases} ax + 2y - z = 4k \\ -x + ay + 2z = 4 \\ 2x - y + az = k^2 \end{cases}$ , where $a, k \in \mathbb{R}$ . |   |
|-----|----------------------------------------------------------------------------------------------------------------------------|---|
|     | (E): $\begin{cases} -x + ay + 2z = 4, \text{ where } a, k \in \mathbb{R}. \end{cases}$                                     |   |
|     |                                                                                                                            |   |
| (a) | Assume that $(E)$ has a unique solution. Express $y$ in terms of $a$ and $k$ .                                             |   |
| (b) | Assume that $(E)$ has infinitely many solutions. Solve $(E)$ .                                                             |   |
|     | (=) (=)                                                                                                                    | ( |
|     |                                                                                                                            |   |
|     |                                                                                                                            |   |
|     |                                                                                                                            |   |
|     |                                                                                                                            |   |
|     |                                                                                                                            |   |
|     |                                                                                                                            |   |
|     |                                                                                                                            |   |
|     |                                                                                                                            |   |
|     |                                                                                                                            |   |
|     |                                                                                                                            |   |
|     |                                                                                                                            |   |
|     |                                                                                                                            |   |
|     |                                                                                                                            |   |
|     |                                                                                                                            |   |
|     |                                                                                                                            |   |
|     |                                                                                                                            |   |
|     |                                                                                                                            |   |
|     |                                                                                                                            |   |
|     |                                                                                                                            |   |
|     |                                                                                                                            |   |
|     |                                                                                                                            |   |
|     |                                                                                                                            |   |
|     |                                                                                                                            |   |
|     |                                                                                                                            |   |
|     |                                                                                                                            |   |
|     |                                                                                                                            |   |
|     |                                                                                                                            |   |
|     |                                                                                                                            |   |
|     |                                                                                                                            |   |

| SEC | CTION B (50 marks)                                    | .* F                                                                                                |                                  |
|-----|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------|
| 9.  | Let $f(x) = \frac{x^2 + 3x}{x - 1}$ , where $x \ne 1$ | 1. Denote the graph of $y = f(x)$ by $H$ .                                                          |                                  |
|     | (a) Find the asymptote(s) of H                        | $\mathcal{H}$ .                                                                                     | (3 marks)                        |
|     | (b) Find the maximum point(s)                         | ) and minimum point(s) of $H$ .                                                                     | (4 marks)                        |
|     | (c) Sketch $H$ .                                      |                                                                                                     | (3 marks)                        |
|     |                                                       | ded by $H$ and the straight line $y = 10$ . Find the volving $R$ about the straight line $y = 10$ . | volume of the solid of (3 marks) |
|     |                                                       |                                                                                                     |                                  |
|     |                                                       |                                                                                                     |                                  |
|     |                                                       |                                                                                                     |                                  |
|     |                                                       |                                                                                                     |                                  |
|     |                                                       |                                                                                                     |                                  |
|     |                                                       |                                                                                                     |                                  |
|     |                                                       |                                                                                                     |                                  |
|     |                                                       |                                                                                                     |                                  |
|     |                                                       |                                                                                                     |                                  |
|     |                                                       |                                                                                                     |                                  |
|     |                                                       |                                                                                                     | _                                |
|     |                                                       |                                                                                                     |                                  |
|     |                                                       |                                                                                                     |                                  |
|     |                                                       |                                                                                                     |                                  |
|     |                                                       |                                                                                                     |                                  |
|     |                                                       |                                                                                                     | -                                |
|     |                                                       |                                                                                                     |                                  |
|     |                                                       |                                                                                                     |                                  |
|     |                                                       |                                                                                                     |                                  |

| 10. Let $g(x) = \cos^2 x \cos 2x$ .                                                               |                                        |
|---------------------------------------------------------------------------------------------------|----------------------------------------|
| (a) Prove that $\int g(x) dx = \frac{\sin 2x \cos^2 x}{2} + \frac{1}{2} \int \sin 2x \cos^2 x dx$ | $n^2 2x dx . 	(2 marks)$               |
| (b) Evaluate $\int_0^{\pi} g(x) dx$ .                                                             | (2 marks)                              |
| (c) Using integration by substitution, evaluate                                                   | $\int_0^{\pi} x g(x) dx . 		(4 marks)$ |
| (d) Evaluate $\int_{-\pi}^{2\pi} x g(x) dx$ .                                                     | (4 marks)                              |
|                                                                                                   |                                        |
|                                                                                                   |                                        |
|                                                                                                   |                                        |
|                                                                                                   |                                        |
|                                                                                                   |                                        |
|                                                                                                   |                                        |
|                                                                                                   |                                        |
|                                                                                                   |                                        |
|                                                                                                   |                                        |
|                                                                                                   |                                        |
|                                                                                                   |                                        |
|                                                                                                   |                                        |

- Let n be a positive integer. Denote the  $2 \times 2$  identity matrix by I. (a)
  - Let A be a 2×2 matrix. Simplify  $(I-A)(I+A+A^2+\cdots+A^n)$ .
  - Let  $A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ , where  $\theta$  is not a multiple of  $2\pi$ . It is given that  $A^n = \begin{pmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{pmatrix}$ .
    - Prove that  $(I A)^{-1} = \frac{1}{2\sin\frac{\theta}{2}} \begin{pmatrix} \sin\frac{\theta}{2} & -\cos\frac{\theta}{2} \\ \cos\frac{\theta}{2} & \sin\frac{\theta}{2} \end{pmatrix}$ .
    - (2) Using the result of (a)(i) and (a)(ii)(1), prove that  $I + A + A^2 + \dots + A^n = \frac{\sin\frac{(n+1)\theta}{2}}{\sin\frac{\theta}{2}} \begin{pmatrix} \cos\frac{n\theta}{2} & -\sin\frac{n\theta}{2} \\ \sin\frac{n\theta}{2} & \cos\frac{n\theta}{2} \end{pmatrix}$ .

(7 marks)

Using (a)(ii), evaluate (b)

(i) 
$$\cos \frac{5\pi}{18} + \cos \frac{5\pi}{9} + \cos \frac{5\pi}{6} + \dots + \cos 25\pi$$
;

(ii) 
$$\cos^2 \frac{\pi}{7} + \cos^2 \frac{2\pi}{7} + \cos^2 \frac{3\pi}{7} + \dots + \cos^2 7\pi$$
.

(6 marks)

Answers written in the margins will not be marked.

|  | 1 |
|--|---|
|  | 1 |
|  | 1 |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |

Answers written in the margins will not be marked.

11.

(a) Let D be a point lying on BC so

Consider  $\triangle ABC$ . Denote the origin by O.

- (a) Let D be a point lying on BC such that AD is the angle bisector of  $\angle BAC$ . Define BC = a, AC = b and AB = c.
  - (i) Using the fact that BD: DC = c: b, prove that  $\overrightarrow{AD} = -\overrightarrow{OA} + \frac{b}{b+c}\overrightarrow{OB} + \frac{c}{b+c}\overrightarrow{OC}$ .
  - (ii) Let E be a point lying on AC such that BE is the angle bisector of  $\angle ABC$ .

    Define  $\overrightarrow{OJ} = \frac{a}{a+b+c} \overrightarrow{OA} + \frac{b}{a+b+c} \overrightarrow{OB} + \frac{c}{a+b+c} \overrightarrow{OC}$ .

    Prove that J lies on AD. Hence, deduce that AD and BE intersect at J.

(7 marks)

- (b) Suppose that  $\overrightarrow{OA} = 35\mathbf{i} + 9\mathbf{j} + \mathbf{k}$ ,  $\overrightarrow{OB} = 40\mathbf{i} 3\mathbf{j} + \mathbf{k}$  and  $\overrightarrow{OC} = -3\mathbf{j} + \mathbf{k}$ . Let *I* be the incentre of  $\triangle ABC$ .
  - (i) Find  $\overrightarrow{OI}$ .
  - (ii) By considering  $\overrightarrow{AI} \times \overrightarrow{AB}$ , find the radius of the inscribed circle of  $\triangle ABC$ .

(5 marks)

Answers written in the margins will not be marked.

|      | <br> |      |
|------|------|------|
|      |      |      |
|      |      |      |
|      |      |      |
| <br> | <br> | <br> |
|      |      |      |
| <br> | <br> |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      | <br> | <br> |
|      |      |      |
|      |      | <br> |
|      |      |      |
| <br> | <br> | <br> |
|      |      |      |
|      |      | <br> |
|      |      |      |
| <br> | <br> | <br> |
|      |      |      |
| <br> | <br> |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
| <br> | <br> | <br> |
|      |      |      |
|      |      |      |

Answers written in the margins will not be marked.

12.