

B

HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY
HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2015

PHYSICS PAPER 1

SECTION B: Question-Answer Book B

This paper must be answered in English

INSTRUCTIONS FOR SECTION B

- (1) After the announcement of the start of the examination, you should first write your Candidate Number in the space provided on Page 1 and stick barcode labels in the spaces provided on Pages 1, 3, 5, 7 and 9.
- (2) Refer to the general instructions on the cover of the Question Paper for Section A.
- (3) Answer ALL questions.
- (4) Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- (5) Graph paper and supplementary answer sheets will be provided on request. Write your Candidate Number, mark the question number box and stick a barcode label on each sheet, and fasten them with string **INSIDE** this Question-Answer Book.
- (6) No extra time will be given to candidates for sticking on the barcode labels or filling in the question number boxes after the 'Time is up' announcement.

Please stick the barcode label here.

Candidate Number					

Question No.	Marks
1	5
2	6
3	9
4	11
5	6
6	8
7	10
8	13
. 9	9
10	7

©香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2015

1

Section B: Answer **ALL** questions. Parts marked with * involve knowledge of the extension component. Write your answers in the spaces provided.

1. The solid curve in Figure 1.1 shows how the resistance of a metallic resistance thermometer varies with temperature. This thermometer is calibrated at standard atmospheric pressure for the melting point of ice and the steam point of boiling water. The dotted calibration line represents how the resistance of the thermometer varies with temperature if a linear resistance-temperature relationship is assumed. The deviation of the curve from linearity has been exaggerated in the figure.

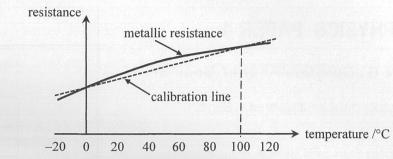


Figure 1.1

margins will not be marked.

i.

(a) (i) Using the resistances at the calibration points tabulated below, calculate the expected resistance at $60\,^{\circ}\text{C}$ if the resistance varies linearly with temperature. (2 marks)

temperature /°C	resistance /Ω
0	102.00
100	140.51

(ii) Now if the resistance of the resistance thermometer is the value found in (a)(i), is the actual temperature higher than, lower than or equal to 60°C?

(b) In an experiment to determine the specific heat capacity of water c_W , Peter used this calibrated resistance thermometer to measure the temperature of water being heated from 0 °C to 60 °C. Heating was stopped when this thermometer's resistance reached the value found in (a)(i). Assuming negligible heat exchange with the surroundings, no error in measuring the energy supplied and the mass of water, explain whether the experimental value of c_W found is higher than, lower than or the same as the actual value. (2 marks)

Answers written in the margins will not be marked.

2015-DSE-PHY 1B–2

Please stick the barcode label here.

		air (in cm ³) available for the diver from the aqua-lung at this water pressure. (2 mark
bajus s Lecture		erod olgan vih doldere in timag grittes ventre percellente in en interesse en
- Tenante		
.1		
(1		e supply of air in (a) is sufficient for the diver to remain at such a depth for 1 hour.
	(i)	If the diver breathed in the same volume V_0 (in cm ³) of air per minute, find V_0 . (1 mar
The Second State of the Second Se		
	(11)	If the diver dives deeper where the water is of temperature 20 °C and pressure 4.5 atm, estimate holong (in minutes) the air in a fully-filled aqua-lung would last. Assume that the diver breathes in the same volume of air per minute as that found in (b)(i).

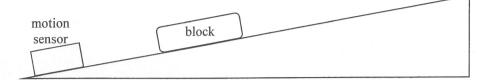
Answers written in the margins will not be marked.

2015-DSE-PHY 1B-3

3

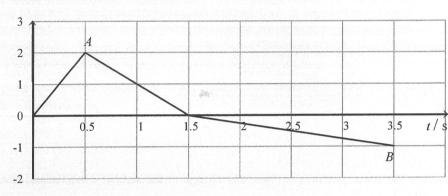
Go on to the next page

	4 8 m			
			Diagram NO	T drawn to scale
		1200		
Figure 3.1		30°		
		B		
	aria su maistrogato	7		
			_ x	
			ari Anale in independent lang	
by holding the end of and the vertical is 30° throughout the motion	If the rope and then one of the acrobat can be not	n releases it when rea n be treated as a poin stance. $(g = 9.81 \text{ m s})$	ching point <i>B</i> at which t mass and the rope ren	the angle between the remains taut and not extension bat when leaving A is z
				<u> </u>
				And a second
(ARRELE)			illov sepe od n i berbes Prima	र्य प्रश्नेत वर्गातीय (१)
		to reach C after releasonation x between B		
				considering his horizo (2 mai


- 1		10 0 10			
1	Please	stick the	barcode	lahel	here

(ii) Calculate the vertical distance of C below B .		(3 marks
	-	
(a) Defens reaching the larger platform is there any short	as to the carebat's mas	hanical energy among the
(c) Before reaching the lower platform, is there any chan points A, B and C?	ge to the acrobat's med	namear energy among the (1 mark)
		7

Answers written in the margins will not be marked.


Go on to the next page

Answers written in the margins will not be marked.

A block is given a push up a rough inclined plane and then released. The velocity-time (v-t) graph recorded by the sensor is shown below. Assume that the frictional force acting on the block is constant in magnitude throughout the motion. Neglect air resistance. $(g = 9.81 \text{ m s}^{-2})$

 $v / m s^{-1}$

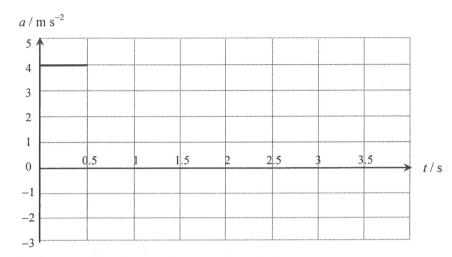
Point A on the graph corresponds to the instant at which the push is removed.

(a) Describe the block's motion from A to B.

(2 marks)

Answers written in the margins will not be marked.

written in the margins will not be marked.



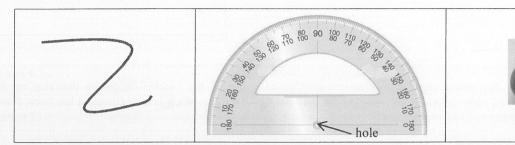
(b) (i)	Find the magnitude of the block's acceleration from $t = 1.5$ s to $t = 3.5$ s.	(2 marks
1		
1		
(3		

Answers written in the margins will not be marked.

Please stick the barcode label here.

(ii) Draw the corresponding acceleration-time (a-t) graph of the block. With the direction up the inclined plane taken to be positive, the part during which the block is being pushed has been drawn for you.

(c) Draw a free-body diagram to show the force(s) (with labels) acting on the block as it moves up the inclined plane after the push is removed.



(d) If the mass of the block is 1.0 kg, find the magnitude of the frictional force. (3 marks)

		a a			
,	 	~~~~~~	 	 	

Answers written in the margins will not be marked.

Go on to the next page

Suppose you are inside a train which is at rest initially and later it travels along a straight horizontal track with constant acceleration. With the aid of a diagram, describe how to measure the acceleration of the train. Show your working including mathematical derivation. (6 marks)

0	
0	
V	
1	
=	
co	
0.00	
0	
0	
+	
0	
9	
=	
THE PARTY OF	
>	
>	
S	
.=	
bn l	
7	
8	
-	
43	
9	
+-	
-	
=	
_	
Answers written in the margins will not be marked.	
0	
+	
=	
E	
~	
5	
S	
- 1	
0	
> 1	
> 1	
S	
7 1	
4	
35/5/5/5/5/5/	
25 60 650	
100000000000000000000000000000000000000	
1	
2000000	

Answers written in the margins will not be marked.

Do not write on this page.

Answers written on this page will not be marked.

A mirage is often seen on highways during hot summers. Pools of water seem to cover the roadway far ahead. Distant objects appear to be reflected by the surface of the 'water'. The phenomenon is caused by the difference in refractive index between the hot air near the road surface and the cooler air above it. The refractive index of cool air is greater than that of hot air, but the differences are so small that the subsequent deviations of light rays are tiny. Sufficiently large temperature differences between the hot air near the road surface and the above cooler air over a short height (i.e. high temperature gradient) and light rays travelling along sufficiently long path lengths are required to form a mirage.

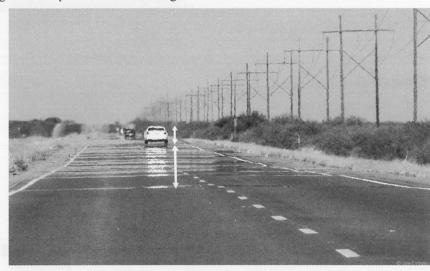
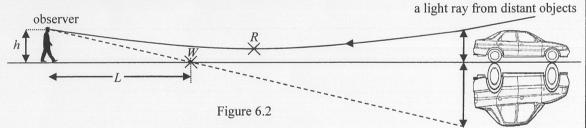
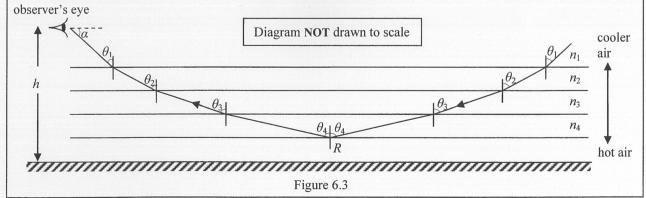




Figure 6.1 Mirage seen on a highway. This photo was taken with a telephoto lens which gives the perception that the viewer is very close to the car ahead.

Figures 6.2 and 6.3 illustrate the principle of the phenomenon. Air of different temperatures is simplified to several layers and modeled as parallel slabs as shown in Figure 6.3. The bending of the light ray from distant objects is much exaggerated. θ_1 , θ_2 , θ_3 and θ_4 denote the angles of incidence at various boundaries of air layers.

Answers written in the margins will not be marked.

Answers written in the margins will not be marked.

2015-DSE-PHY 1B–10 10

Answers written in the margins will not be marked.

written in the margins will not be marked

(a) Sta	te ONE essential condition for a mirage to be observed.	(1 mark)
(b) (i)	Referring to Figure 6.3, deduce the relationship between θ_1 , θ_4 and refractive indices internal reflection just to occur at R , θ_4 can be taken as 90°. Hence, find the corresp if $n_1 = 1.000261$ and $n_4 = 1.000221$.	es n_1 , n_4 . For tota onding value of θ (3 marks)
	The state of the s	
(ii)	Find L in Figure 6.2 if $h = 1.5$ m. (Note: $\alpha + \theta_1 = 90^\circ$ in Figure 6.3.)	(2 marks)
(a) A t	nirsty traveller in a vast desert sees similar mirages such that a 'water source' appe	ore at W which is
dist	ance L away like the one in Figure 6.2. If he walks a distance L towards that 'water ald the 'water source' appear to him? Explain your answer.	

0
š
arl
E
O
9
101
=
=
ns
.20
ar
H
je
#
E.
T,
tte
.E
>
nswers written in the margins will not be marked.
We
IS
AI

1 1990110 1.1	laser a	<i>D</i> = 3.0 m		first-order bright fring
	double s		screen	
	double s	Diagram NOT drawn to sca	le	
Himse A	2 shows a set-up wi	ith two small LEDs separated by	6 mm and b	
waveleng	th 650 nm. State and	explain what you would expect to se	e on the screer	oth LEDs emit light on the control of the control o
waveleng	gth 650 nm. State and $6 \frac{\Psi}{mm} =$	explain what you would expect to se $D = 3.0 \text{ m}$	e on the screer	oth LEDs emit light on the control of the control o
(b) Figure 7. waveleng	gth 650 nm. State and $\underline{\Psi}_{\Rightarrow \bigcirc}$	explain what you would expect to se $D = 3.0 \text{ m}$	e on the screen	oth LEDs emit light on the control of the control o
waveleng	gth 650 nm. State and $6 \frac{\Psi}{mm} =$	explain what you would expect to se	e on the screer	oth LEDs emit light on the control of the control o
waveleng	gth 650 nm. State and $6 \frac{\Psi}{mm} =$	explain what you would expect to se $D = 3.0 \text{ m}$	e on the screer	oth LEDs emit light on the control of the control o
waveleng	gth 650 nm. State and $6 \frac{\Psi}{mm} =$	explain what you would expect to se $D = 3.0 \text{ m}$	e on the screer	oth LEDs emit light on the control of the control o
waveleng	gth 650 nm. State and $6 \frac{\Psi}{mm} =$	explain what you would expect to se $D = 3.0 \text{ m}$	e on the screer	oth LEDs emit light on the control of the control o
waveleng	gth 650 nm. State and $6 \frac{\Psi}{mm} =$	explain what you would expect to se $D = 3.0 \text{ m}$	e on the screer	oth LEDs emit light on the control of the control o

2015-DSE-PHY 1B-12

Figure 7.3 shows circular water waves in a ripple tank. The two point sources S_1 and S_2 , separated by 40 mm, are driven by the same vibrator. The solid lines represent the wave crests from S_1 and the dotted lines represent the wave crests from S_2 . The wavelength of the waves is 10 mm. 10 mm 10 mm 90 80 70 60 Figure 7.3 50 40 30 20 10 in the margins will 40 50 20 30 60 70 90 (c) Sketch on Figure 7.3 two lines to indicate all points P with path difference $PS_1 - PS_2$ equals to 10 mm (L_1) and 20 mm (L_2). State the kind of interference that occurs at these points P. (d) (i) If the interference pattern is observed along line XY at 50 mm from the sources as shown, measure the separation between adjacent first- and second-order maxima Δy . separation $\Delta y =$ *(ii) However, using the calculation method in (a) would obtain 12.5 mm for this separation. Why does this calculated value differ with the measurement in (d)(i)?

Answers written in the margins will not be marked.

13

	(a) Eac	h overhead cable consists of 40 strands of identical transmission lines bundled together.
		a strand of transmission line of an overhead cable
	(i)	One <u>single</u> strand of transmission line has a cross-sectional area of 1.3×10^{-5} m ² and resistivity $2.6 \times 10^{-8} \Omega$ m. Find the resistance <u>per km</u> of a single strand of transmission line. (2 marks)
	(ii)	Explain why the resistance <u>per km</u> of an overhead cable is much smaller than that of a single strand of transmission line. Estimate the resistance <u>per km</u> of an overhead cable. (2 marks)
1507.E	14 (1)	
	(iii)	Hence, explain why a bird can stand with both feet on a high-voltage cable without getting an electric shock. (2 marks)

(i) Ca	culate the current carried by the overhead cable. (2 mar
		······································
(ii) Sho	ow that less than 0.1% of the electrical power is lost after transmitted through a total of 10 km
		erhead cable. (2 mar
(i		the voltage drop across this overhead cable is negligible, a voltage of 400 kV at the cable's endopped down by an ideal transformer with turns ratio 12:1.
	(I)	Find the secondary voltage from the transformer. (1 mar
	(II)	
		measure for improvement. (2 mark

arked.
ot be ma
will no
nargins
the r
itten ir
aswers written in the margins will not be marked
Ans

				S		$\nearrow P$				
Figu	ure 9.1		bi	left	6 cm {	6 cm B XXXX XXX XXX C ducting liqu		pht metallic contains		to scale
			etic field po	ointing into		is applied o			containing p	art of the ro
	(a) S1		ection (to the	ne left / to	the right				er) that the ro	od 'kicks' ar (3 mark
					200					
	(b) W A	When switch ssume that	S is closed the magneti	, the initial c force acts	moment a	bout point <i>F</i> lpoint of the	that mak	es the rod 'le rod within	kick' out is 7	$2 \times 10^{-4} \mathrm{N}$ rs: field.
	(i	i) Calculat	e the magn	etic force ac	cting on th	e rod at that	instant.			(2 mark
	(i		find the stre		he magne	tic field if th	e current	flowing thro	ough the rod	is 3.2 A who (2 mark
									and Colombia	
										NEW TOTAL PROPERTY AND ADDRESS.

2015-DSE-PHY 1B-16

(c) Now the uniform magnetic field is removed and a bar magnet is placed underneath the container as shown in Figure 9.2. The rod is held tilted at an angle to the vertical but with its lower end still in the conducting liquid. observer's eye Diagram NOT drawn to scale Figure 9.2 battery (i) Sketch on Figure 9.2 the field lines around the rod due to the bar magnet. (1 mark) margins will not be marked. (ii) After closing switch S and the rod is released from rest, describe its subsequent motion viewed from Answers written in the margins will not be marl

Answers written in the margins will not be marked.

2015-DSE-PHY 1B-17

nswers written in the margins will not be marked.	
in the margins v	
Answers written	

		$_{1}^{2}$ H + $_{1}^{3}$ H \rightarrow $_{2}^{4}$ He + $_{0}^{1}$ n + energy released
(Given:	mass of a deuterium nucleus = 2.014102 u mass of a tritium nucleus = 3.016049 u mass of a helium nucleus = 4.002602 u mass of a neutron = 1.008665 u
*((a) Calc	culate the energy released, in MeV, in the above nuclear fusion. (2 mark
	A whele	
		At .
	11.13	
	large	euterium nucleus and a tritium nucleus have to be within 10^{-15} m for nuclear fusion to occur and that a amount of work done (about 0.4 MeV) is needed to bring two well separated nuclei to such a clounce.
	large	e amount of work done (about 0.4 MeV) is needed to bring two well separated nuclei to such a closure. Explain why a large amount of work done is needed and state the kind of energy this work done has
	large dista	Explain why a large amount of work done is needed and state the kind of energy this work done has
	large dista	e amount of work done (about 0.4 MeV) is needed to bring two well separated nuclei to such a closure. Explain why a large amount of work done is needed and state the kind of energy this work done has
	large dista	e amount of work done (about 0.4 MeV) is needed to bring two well separated nuclei to such a closure. Explain why a large amount of work done is needed and state the kind of energy this work done has
	large dista	e amount of work done (about 0.4 MeV) is needed to bring two well separated nuclei to such a closure. Explain why a large amount of work done is needed and state the kind of energy this work done has
	large dista	e amount of work done (about 0.4 MeV) is needed to bring two well separated nuclei to such a cloance. Explain why a large amount of work done is needed and state the kind of energy this work done has

18

(!!)	English subsequents high temporature is an all 100 states of the control of the c
(11)	Explain why a very high temperature is needed for nuclear fusion to occur. (1 ma
	Estimate the <u>order of magnitude</u> of the minimum temperature at which fusion of deuterium a tritium nuclei would be possible if the plasma can be regarded as an ideal gas. (Hint: For an ideal g
	the gas molecules each is assumed to have an average kinetic energy $E_{\rm K} = \frac{3RT}{2N_{\rm A}}$) (2 mark
	The state of the s
	END OF PAPER
	END OF PAPER
rces of ma	END OF PAPER atterials used in this paper will be acknowledged in the Examination Report and Question Paper the Hong Kong Examinations and Assessment Authority at a later stage.