Paper 1 Section A

Question No.	Key	Question No.	Key
1.	D (86)	26.	A (46)
2.	C (88)	27.	B (73)
3.	A (68)	28.	C (46)
4.	D (72)	29.	A (68)
5.	A (70)	30.	D (54)
6.	A (67)	31.	A (57)
7.	C (93)	32.	C (64)
8.	B (75)	33.	B (69)
9.	B (68)		
10.	A (40)		
11.	B (57)		
12.	C (89)		
13.	C (59)		
14.	A (54)		
15.	D (61)		
16.	C (77)		
17.	B (42)		
18.	D (73)		
19.	D (51)		
20.	B (63)		
21.	C (66)		
22.	B (63)		
23.	D (55)		
24.	B (62)		
25.	D (70)		

Note: Figures in brackets indicate the percentages of candidates choosing the correct answers.

Paper 1 Section B

			Solution	Marks	Remarks
1.	(a)	Or A la due t	rger bulb improves the sensitivity of the thermometer. rger bulb minimizes the effect on the temperature reading to the other parts of the thermometer stem that are exposed to rent temperatures.	1A 1A	
	(b)	(i)	$E = mc\Delta T$ = 0.015 × (2.9 × 10 ³) × (20 – 15) = 217.5 J	1M 1A	
		(ii)	Time taken to reach air temperature = $\frac{217.5}{0.5}$ = 435 s	1M 1A 2	
		(iii)	The thermometer would be in direct contact with the cooler air and would cool down quickly. The temperature reading would be less than the actual soil temperature.	-	
	plast Fire Read	the bu	the mass of a bullet m and the mass of the trolley with M . Illet towards the plasticine. Speed of the trolley ν immediately after the bullet hit the	1A 1A 1A	
	The	speed	of the bullet u is given by $u = \frac{M+m}{m}v$.	1A	
	- The - The of t	e bulle	t should be fired close to the plasticine. t should be fired along the direction of travel Any	1A 1A 1A	

	$\frac{\left(c_{rms}\right)_f}{c_{rms}} = \sqrt{\frac{T_f}{T}}$		
	= 1/ =	1M	(8)
<u>c</u>	Tino		
C	$\frac{\mathcal{C}_{\text{r.m.s.}}}{\mathcal{C}_{\text{r.m.s.}}} \frac{\text{at } 350 \text{K}}{\text{at } 300 \text{K}} = \sqrt{\frac{350}{300}}$		
	$e_{\text{r.m.s.}}$ at 500 K $= 1.08$	1A	
	= 1.08	2	
f	The speed of the gas molecules increases. They collide more frequently and violently with the wall of the container. Thus, the pressure increases.	1A+1A	
		2	
(a) ((i) By $s = ut + \frac{1}{2}gt^2$		700000
	$0.11 = \frac{1}{2} g (0.05 \times 3)^2$	1M	
	$g = 9.78 \text{ m s}^{-2}$	1A	be ach determine of 187 C at
	g – 9.76 m s	2	AAAAAAN TAATAA
		1A 1A 2	Correct horizontal positions Correct vertical positions
	(2) $v_x = 1 \text{ m s}^{-1}$ $v_y = u_y + gt$ $= 0 + 9.78 \times (0.05 \times 3)$ $= 1.47 \text{ m s}^{-1}$ $v = \sqrt{v_x^2 + v_y^2}$	1M	
		1M	
	$= \sqrt{1^2 + 1.47^2}$	1A	
	$= 1.78 \text{ m s}^{-1}$	3	
			2000
	The air resistance acting on the ball increases as its speed increases. When the air resistance equals to the weight of the ball,	1A 1A	
_	net force acting on the ball becomes zero, by Newton's first law of motion, the ball travels with constant speed.	1A	
	Or net force acting on the ball becomes zero, by Newton's second law of motion, the ball will not accelerate further and travels with constant speed.	1A	

	Solution	Marks	Remarks
(a)	normal reaction		
	friction	1A+1A	
	weight	2	
(b)	$\omega = \pi \text{ s}^{-1}$ $F = mr\omega^{2}$ $= (1)(0.3)(\pi)^{2}$ $= 2.96 \text{ N (towards the centre of the turntable)}$	1A 1M 1A	
	Alternative method: $v = 0.3\pi \text{ m s}^{-1}$ $F = m \frac{v^2}{r}$ = 2.96 N	1A 1M 1A	
(a)		3	
(c)	The initial linear speed of the teapot = $r\omega = 0.3\pi$ m s ⁻¹ Deceleration of the teapot $a = \frac{f}{m} = \frac{10}{1} = 10$ m s ⁻² Distance travelled s is given by $v^2 - u^2 = 2as$	1M	
	$s = \frac{u^2}{2a} = \frac{(0.3\pi)^2}{2(10)}$ = 0.044 m (or 4.4 cm)	1M	
	Alternative method: The initial linear speed of the teapot = $r\omega = 0.3\pi$ m s ⁻¹ K.E. of the teapot is dissipated as work done against friction $\frac{1}{2}mu^2 = fd$	1M	
	$d = \frac{mu^2}{2f} = \frac{(1)(0.3\pi)^2}{2(10)}$	1M	
	= 0.044 m	3	

		Solution	Marks	Remarks
(a)	(i)	$v = f \lambda$ $= 5 \times 4$ $= 20 \text{ cm s}^{-1}$	1M 1A	g86 a - A.
	(ii)	Y is moving upwards at $t = 0$.	1A	
	(iii)	displacement		
		0.2 time / s	1A 1M	
(b)	(i)	The water waves from A and B are in anti-phase at Q .	2 1M	
		Or The path difference at $Q = (n + 1/2)\lambda$. Destructive interference occurs to form a minimum.	1M 1A 2	
	(ii)	Path difference at $Q = 1.5\lambda = 3$ cm $\lambda = 2$ cm	1M 1A	
	(iii)	amplitude		
		${O}$ ${\underset{P}{\longrightarrow}}$ distance	1A	
			1	

		Solution	Marks	Remarks
(a)	(i)	At the critical angle c , $\frac{\sin 90^{\circ}}{\sin c} = n$		7
		$\frac{1}{\sin c} = 1.36$	1M	
		$c = 47.3^{\circ}$	1A 2	
	(ii)	Angle of refraction at $E = 90^{\circ} - 47.33^{\circ} = 42.67^{\circ}$ By Snell's law	1M	
		$\frac{\sin \theta}{\sin 42.67^{\circ}} = 1.36$	1M	
		$\theta = 67.2^{\circ}$	1A 3	
	(iii)			
		$B \longrightarrow C$		
	 6			
	1		2A	
	//	D	2	
(b)	(i)		2	
		45°		
		A S COST		
			1A	
		The angle of incidence of the light ray from the object is (45°, which is) less than the critical angle of the plastic	1A	
		prism. Total internal reflection will not occur and the image may not be clear enough for observation.	1A	
			3	
	(ii)	Glass prism (with critical angle less than 45°) Or Plane mirror	1A 1A	
		A AMANA AMANANA	1	

		Solution	Marks	Remarks
8.	(a)		w edit	s.E'g.il pascy'e
		(A) + (V)	1A 1A 1A	Correct symbols of light bulb, variable resistor and voltmeter Correct positions Correct positive terminal connection for the voltmeter
	(b)	As the voltage across the light bulb increases, the temperature of the light bulb increases, thus its resistance increases.	1A 1A 2	
	(c)	$R = \frac{V}{I}$ is the definition of resistance. It is applicable to all conductors.	1A	
	(d)	At $V = 0.1 \text{ V}$ $R = \frac{V}{I} = \frac{0.1}{76 \times 10^{-3}} = 1.32 \Omega$ At $V = 2.5 \text{ V}$	1A	
		$R = \frac{V}{I} = \frac{2.5}{250 \times 10^{-3}}$ $= 10 \ \Omega$	1A 1A 3	for reading correct values (ignore the order of magnitude) from the graph
	(e)	$R = \rho \frac{l}{A}$ $l = \frac{RA}{\rho}$ $= \frac{1.32 \times (1.66 \times 10^{-9})}{5.6 \times 10^{-8}}$ $= 0.039 \text{ m}$	1M+1M 1A	

			Solution	Marks	Remarks
).	(a)	(i)	The magnetic field at Q due to P points out of the paper.	1A 1	
		(ii)	wire Q		
				1A	
				1	
		(iii)	The magnetic field at Q due to P is $\mu_0 I_P$		
			$B_Q = \frac{\mu_0 I_P}{2\pi r}$ For a certain length segment <i>l</i> of wire, the magnetic force is	1M	
			$F = B_{Q}I_{Q}l\sin\theta$ $= \frac{\mu_{0}I_{P}}{2\pi r}I_{Q}l$	1M	
			The magnetic force per unit length is $F_{l} = \frac{F}{l} = \frac{\mu_{0}I_{P}I_{Q}}{2\pi r}$	1M	
			$\Gamma_l - \frac{1}{l} = \frac{2\pi r}{2}$	3	
et.		(iv)	The two forces form an action and reaction pair, thus they are equal in magnitude.	1A 1A	
	(b)	(i)	As current passes in the same direction between neighbouring wire segments, the wire segments attract each other, and the solenoid is compressed.	1A 1A 2	
		(ii)	Current keeps on flowing in the same direction between neighbouring wire segments at each instant, thus the solenoid will be compressed due to magnetic force.	1A	

		Solution	Marks	Remarks
10. ((a)	$^{210}_{84}\text{Po} \rightarrow ^{206}_{82}\text{Pb} + ^{4}_{2}\text{He}$	2A	1(258) 5 3 11 11 11 11 11
			2	
((b)	The α -particles ionize the air particles.	1A	
		The ions neutralize the charges on the dust/photo or film surface.	1A 2	2
((c)	This is because α -particles have a range of only a few centimeters		
,	(0)	in air.	1A	
			1	
((d)	$\frac{365}{(1)^{138}}$		
		Activity after 1 year = $\left(\frac{1}{2}\right)^{\frac{3}{138}}$	1M	
		= 0.160 unit	1A	
		Alternative method:		
		Alternative method: $A = A_0 e^{-\frac{\ln 2}{t_1/2}t}$ $= 1 \times e^{-\frac{\ln 2}{138}(365)}$ $= 0.160 \text{ unit}$		
		$= 1 \times e^{-\frac{\ln 2}{138}(365)}$	1M	
		= 0.160 unit	1A	
			2	

Paper 2

Section A: Astronomy and Space Science

1. C (55%)	2. B (52%)	3. C (55%)	4. B (51%)
5. D (62%)	6. D (61%)	7. A (53%)	8. A (65%)

		Solution	Marks	Remarks
1. (a)	(i)	$\frac{GMm}{r^2} = \frac{mv^2}{r}$ $v^2 = \frac{GM}{r}$	1M	
	(ii)	$T = \frac{2\pi r}{v}$ $T^{2} = \frac{4\pi^{2}r^{2}}{v^{2}}$ $= \frac{4\pi^{2}r^{2}}{\left(\frac{GM}{r}\right)}$ from (i)	1M	
		$= \frac{4\pi^2 r^2}{\left(\frac{GM}{r}\right)}$ from (i) $= \frac{4\pi^2}{GM} r^3$	1M	
(b)	(i)	By $\frac{\Delta \lambda}{\lambda_0} \approx \frac{v}{c}$ $\Delta \lambda \approx \frac{v}{c} \lambda_0 = \frac{1.23 \times 10^5}{3 \times 10^8} \times 21.106$ $= 8.65346 \times 10^{-3} \text{ cm}$	1M	
		$\lambda = \lambda_0 - \Delta \lambda$ = 21.106 - 8.65346 × 10 ⁻³ = 21.097 cm	1A 2	
	(ii)	$T = \frac{2\pi r}{v}$ $= \frac{2 \times 3.14 \times (3.98 \times 10^{20})}{1.23 \times 10^{5}}$ $= 2.03 \times 10^{16} \text{ s (or } 6.42 \times 10^{8} \text{ yr)}$	1A	3.

	Solution	Marks	Remarks
(b) (iii)	For the hydrogen gas orbiting the M33 Galaxy at X ,		
	$T^2 = \frac{4\pi^2}{GM}r^3\dots(1)$	M - A - 1 M - A	
	where T is the answer in (b)(ii), M is the mass of the M33 Galaxy and r is the distance between position X and the centre of the galaxy.		
	Consider the Earth orbiting around the Sun,		
	$T_{\rm S}^2 = \frac{4\pi^2}{GM_{\rm S}}r_{\rm S}^3\dots(2)$		
	where $T_S = 1$ year, $r_S = 1$ AU and M_S is the solar mass.	1M	
	$\frac{(1)}{(2)}$ and we have		
	$\frac{T^2}{T_{\rm S}^2} = \frac{M_{\rm S}r^3}{Mr_{\rm S}^3}$	1M	
	$M = \frac{T_{\rm S}^2 r^3}{T^2 r_{\rm S}^3} M_{\rm S}$	11V1	
	$= \left(\frac{3.16 \times 10^7}{2.03 \times 10^{16}}\right)^2 \left(\frac{3.98 \times 10^{20}}{1.50 \times 10^{11}}\right)^3 M_{\rm S}$		
	$= 4.526 \times 10^{10} M_{\rm S} \approx 4.53 \times 10^{10} M_{\rm S}$	1A	
	Alternative method:		
	Use $T^2 = \frac{4\pi^2}{GM}r^3$ to find the mass of M33	1M	
	$M = \frac{4\pi^2 (3.98 \times 10^{20})^3}{G(2.03 \times 10^{16})^2} = 9.055 \times 10^{40} \mathrm{kg}$		
	Use $T_{\rm S}^2 = \frac{4\pi^2}{GM_{\rm S}} r_{\rm S}^3$ to find solar mass	1M	
	$M_{\rm S} = \frac{4\pi^2 (1.5 \times 10^{11})^3}{G(3.16 \times 10^7)^2} = 2.0 \times 10^{30} \mathrm{kg}$		
	Then $M = 4.526 \times 10^{10} M_{\rm S}$	1A 3	
(iv)	Dark matter / a (super) massive black hole / non-luminous	1A	
	object exists in the galaxy.		

Section B: Atomic World

1. B (70%)	2. A (30%)	3. C (57%)	4. C (60%)
5. B (52%)	6. A (64%)	7. A (70%)	8. D (70%)

		Solution	Marks	Remarks
(a)	a pho	n an atom transits from a higher energy level to a lower one, oton with energy equals to the energy difference between the s is emitted.	1A	N
		e energy levels are quantized, the energy (and thus elength) of the photons emitted can take some discrete values	1A	
		•	2	
(b)	(i)	Line X belongs to the ultra-violet region.	1A 1	
	(ii)	energy = $\frac{hc}{\lambda e}$		
		$=\frac{\left(6.63\times10^{-34}\right)\left(3\times10^{8}\right)}{\left(366\times10^{-9}\right)\left(1.60\times10^{-19}\right)}$	1M	
		= 3.40 eV	1A 2	
	(iii)	The radiation would be absorbed, and the hydrogen atoms ionized.	1A 1A	
(c)	(i)	The transition from $n = 3$ to $n = 2$. (i.e. from 2^{nd} to 1^{st} excited state)	1A 2	
	(ii)	From line <i>X</i> , we have $\frac{1}{366} = R(\frac{1}{2^2} - 0)$	1M	
		$R \approx 0.0109 \text{ (nm}^{-1}) \text{ (or } 1.09 \times 10^7 \text{ m}^{-1})$ For line Y,		
		$\frac{1}{\lambda} = R(\frac{1}{2^2} - \frac{1}{3^2})$	1 A	
		$\lambda = 658.8 \text{ nm}$	1A	
		Alternative method: $R = \frac{13.6 \text{ eV}}{hc}$		
		$= \frac{13.6 \times (1.6 \times 10^{-19})}{(6.63 \times 10^{-34})(3 \times 10^{8})} \begin{vmatrix} E = E_2 - E_3 \\ h = 13.6 \left(\frac{1}{2^2} - \frac{1}{2^2}\right) \text{ eV} \end{vmatrix}$	1M	
		$ = \frac{13.6 \times (1.6 \times 10^{-19})}{(6.63 \times 10^{-34})(3 \times 10^{8})} $ $ = 1.094 \times 10^{7} \text{ (m}^{-1)} $ $ = \frac{1}{\lambda} = R(\frac{1}{2^{2}} - \frac{1}{3^{2}}) $ $ = 1.36 \left(\frac{1}{2^{2}} - \frac{1}{3^{2}}\right) \times 1.6 \times 10^{-19} $ $ = 13.6 \left(\frac{1}{2^{2}} - \frac{1}{3^{2}}\right) \times 1.6 \times 10^{-19} $ $ = 6.58 \times 10^{-7} \text{ m} $		
		$\lambda = \frac{2^2 - 3^2}{\lambda = 6.58 \times 10^{-7} \text{ m}}$ $\lambda = 6.58 \times 10^{-7} \text{ m}$	1A	
			2	

Section C: Energy and Use of Energy

1. B (63%)	2. C (89%)	3. B (75%)	4. D (73%)
5. C (57%)	6. D (38%)	7. *	8. A (52%)

			Solution	Marks	Remarks
3.	(a)	(i)	The refrigerant flows from indoor to outdoor through the compressor.	1A 1	
		(ii)	The refrigerant condenses / changes from gas to liquid. It releases the heat/internal energy to the environment.	1A D	
	(b)	(i)	Total surface area = $(4 \times 2) \times 4 + (2 \times 2) \times 2 = 40 \text{ m}^2$ Cooling capacity = rate of heat gain = $\kappa \frac{A(T_H - T_C)}{d} = 0.03 \frac{40(50)}{0.08}$ = 750 W	1M 1M 1A	
		(ii)	The compartment absorbs heat by radiation, the exterior surface temperature of the refrigerated compartment is higher than 35 °C. Thus, the interior will be higher than -15 °C.	1A 1A	The compartment also absorbs heat from the engine / exhaust system.
	(c)		t emitting diode (LED) has a long life time very high efficacy.	1A 1A	

^{*}This item was deleted.

Section D : Medical Physics

1. A (69%)	2. C (40%)	3. B (72%)	4. D (58%)
5. B (57%)	6. A (72%)	7. C (65%)	8. D (53%)

		Solution	Marks	Remarks
4.	(a)	X-ray is produced when fast electrons hit a heavy metal target.	1A 1	
	(b)	CT scan is better at mapping soft tissues / differentiating between overlying structures in the body / making 3D images	1A 1	
	(c)	(i) The effective dose of CT scan is much higher because multiple X-ray images are taken for a CT scan.	1A 1	
Manager (Manager) and Angel and an angel an		(ii) Equivalent background radiation dose $= 1.85 \times \frac{1.5}{0.02}$	1.4	
		= 138.75 days	1A 1	
	(d)	(i) The lung cavity is filled with air / There is a large difference in density between the lung cavity and bone	1A 1	
		(ii) $I = I_0 e^{-(\mu_1 x_1 + \mu_2 x_2 + \mu_3 x_3)}$		
		$\frac{I}{I_0} = e^{-(0.1 \times 19.8 + 0.18 \times 8.8 + 0.48 \times 4.4)}$	1M+1M	
		$=e^{-5.676}=3.43\times10^{-3}$	1A 3	
	(e)	I do not agree because a CT scan may cause ionization (changes) in cells / damage DNA of the foetus. An ultrasound scan can be used for checking a foetus.	1A 1A 2	