2017-DSE PHY PAPER 1B B

HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY
HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2017

Mary pure reported generalism and the second

Please stick the barcode label here.

Candidate Number		ja,			

Question No.	Marks
1	7
2	5
3	4
4	10
5	8
6	10
7	11
8	12
9	10
10	7

PHYSICS PAPER 1

SECTION B: Question-Answer Book B

This paper must be answered in English

INSTRUCTIONS FOR SECTION B

- (1) After the announcement of the start of the examination, you should first write your Candidate Number in the space provided on Page 1 and stick barcode labels in the spaces provided on Pages 1, 3, 5, 7 and 9.
- (2) Refer to the general instructions on the cover of the Question Paper for Section A.
- Answer ALL questions.
- (4) Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- (5) Graph paper and supplementary answer sheets will be provided on request. Write your Candidate Number, mark the question number box and stick a barcode label on each sheet, and fasten them with string INSIDE this Question-Answer Book.
- (6) No extra time will be given to candidates for sticking on the barcode labels or filling in the question number boxes after the 'Time is up' announcement.

©香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2017 Section B: Answer ALL questions. Parts marked with * involve knowledge of the extension component. Write your answers in the spaces provided.

1. Read the following passage about soil thermometer and answer the questions that follow.

The temperature of soil changes with depth, and this information is important to farmers and scientists. To measure soil temperatures at depths close to the ground surface, the bulb of a thermometer is buried in the soil. The stem of the thermometer is bent 90° for easy reading. Figure 1.1a is a schematic diagram and Figure 1.1b shows a photo of a soil thermometer.

For depths greater than 30 cm, a steel pipe is driven into the soil (Figure 1.2a); and a liquid-in-glass thermometer with a protective glass case is lowered into the steel pipe (Figure 1.2b). The bulb of the thermometer is embedded in paraffin wax (Figure 1.2c). To read the temperature, the thermometer is lifted out of the steel pipe by pulling the chain.

(a) As shown in Figure 1.1b, the bulb of the soil thermometer is very large compared to those of com thermometers. Suggest a reason for this design. (1 m	
(b) On a certain morning, the air temperature is 15°C. An observer takes a measurement of the temperature at 1 m deep. The thermometer reading is 20°C. It is given that the mass of the paraffin enclosing the thermometer bulb is 0.015 kg, and the specific heat capacity of paraffin was 2.9 × 10³ J kg ⁻¹ °C ⁻¹ .	wax
(i) Calculate the energy loss of the paraffin wax as it cools down to the air temperature. (2 ma	rks)
	•••••
(ii) It is known that the paraffin wax enclosing the bulb of the thermometer gains or loses energy constant rate of 0.5 J s ⁻¹ , estimate the time taken for the paraffin wax to reach the air temperature at the thermometer is lifted out of the soil. (2 ma	after
(iii) If there is no paraffin wax enclosing the bulb of the thermometer, explain how the thermom reading as recorded by the observer is affected. (2 ma	

Answers written in the margins will not be marked.

2017-DSE-PHY 1B-3

*3.	The average kinetic energy of one monatomic gas molecule at temperature T is given by	
	$E_{K} = \frac{3}{2} \left(\frac{R}{N_{A}} \right) T ,$	
	where R is the universal gas constant and N_A is the Avogadro constant. A monatomic gas is heated to 350 K under fixed volume.	from 300
	(a) Estimate the ratio of the root-mean-square speed $(c_{r,m,s})$ of the gas molecules at the two to	
	$\left(\frac{c_{\text{r.m.s.}}}{c_{\text{r.m.s.}}} \frac{\text{at } 350 \text{K}}{\text{3}00 \text{K}}\right)$.	(2 mark
	Special Review of the Control of the	
	(h) Thus using kinetic theory explain why the gas pressure would increase.	(2 mark
	(b) Thus, using kinetic theory, explain why the gas pressure would increase.	(2 mark
	(b) Thus, using kinetic theory, explain why the gas pressure would increase.	(2 mark
	(b) Thus, using kinetic theory, explain why the gas pressure would increase.	(2 mark
	(b) Thus, using kinetic theory, explain why the gas pressure would increase.	(2 mark
	(b) Thus, using kinetic theory, explain why the gas pressure would increase.	(2 mark
	(b) Thus, using kinetic theory, explain why the gas pressure would increase.	(2 mark
	(b) Thus, using kinetic theory, explain why the gas pressure would increase.	(2 mark
	(b) Thus, using kinetic theory, explain why the gas pressure would increase.	(2 marl
	(b) Thus, using kinetic theory, explain why the gas pressure would increase.	(2 marl
		(2 mark
		(2 mark
		(2 mark

Go on to the next page

Answers written in the margins will not be marked.

Answers written in the margins will not be marked.

Figure 4.2

		circles (O						0.1 -1		2 marks
	(2)	(a)(i) to ca	the bearin lculate the	g is project speed of the	ed horizonta e projected b	lly with an i earing when	nitial speed the last ima	of 1 m s ', age was take	en. (results of marks
							<u> </u>			•••••
			**************************************			••••••		50,4(E.vs		
						•••••				
pe	eriod of	time. By	considerin		s acting on t	cliff, the spo			f motion	, explai
pe	eriod of	time. By	considerin	g the forces	s acting on t				f motion	
pe	eriod of	time. By	considerin	g the forces	s acting on t				f motion	, explain
pe	eriod of	time. By	considerin	g the forces	s acting on t				f motion	, explain
pe	eriod of	time. By	considerin	g the forces	s acting on t				f motion	, explain
pe	eriod of	time. By	considerin	g the forces	s acting on t				f motion	, explai
pe	eriod of	time. By	considerin	g the forces	s acting on t				f motion	, explain

Answers written in the margins will not be marked.

Go on to the next page

7

A teapot of mass 1 kg is put 30 cm from the centre of a horizontal turntable, Figure 5.1 shows the side view. When the turntable is rotating, the teapot remains at the same position on the turntable.

Figure 5.1

Answers written in the margins will not be marked.

(a) On Figure 5.1, draw and label all the forces acting on the teapot when the turntable is rotating.

(2 marks)

(b) Taking the teapot as a point mass, estimate the net force acting on the teapot when the turntable is rotating at a rate of 0.5 revolutions per second. (3 marks)

The turntable is suddenly stopped and the teapot slips. The turntable is rotating at a rate of 0.5 revolutio per second just before it stops, and the frictional force acting on the teapot is 10 N when it is slippin Determine the distance travelled by the teapot after the turntable stops. (3 mark

Go on to the next page

Figure 6.3

(b) In Figure 6.3, A and B are two dippers vibrating in phase in a water tank. The distance between A and B is 6 cm. OP is the perpendicular bisector of AB. Q is a second minimum from P, where AQ = 12 cm and BQ = 15 cm.

(i) Explain why a minimum occurs at Q. (2 marks)

(ii) Determine the wavelength of the water wave. (2 marks)

(iii) Sketch in Figure 6.4 how the **AMPLITUDE** of the water wave varies along the line *OP*. (1 mark)

11

Answers written in the margins will not be marked.

Figure 7.1

7.	(a)	A light ray enters a rectangular plastic block $ABCD$ from air at point E , and the angle of incidence is θ .
		The light ray emerges along face BC as shown in Figure 7.1. The refractive index of the plastic is 1.36.

(iii) If the light ray enters the plastic block at point E with an angle of incidence larger than θ , sketch the path of the light ray in Figure 7.1. (2 marks)

(b) A student designs a periscope using two plastic prisms, the refractive index of the plastic is 1.36. As shown in Figure 7.2, an object is placed in front of the periscope.

Figure 7.2

(i) Complete the path of the light ray from the object in Figure 7.2, and explain why the periscope fails to work. (3 marks)

(ii) What can be used to replace the two plastic prisms so that the periscope can work properly?

- 8. A student uses the following apparatus to measure the resistance of a tungsten filament light bulb.
 - a battery, a switch, a variable resistor, an ammeter, a voltmeter, a light bulb
 - (a) Figure 8.1 shows an incomplete circuit for the experiment. The '+' symbol represents the positive terminal of the ammeter.

Use suitable circuit symbols to complete the circuit, and mark the positive terminal of the voltmeter with '+'. (3 marks)

Figure 8.1

The table below and Figure 8.2 show the results obtained.

Voltage across the light bulb V/V	0	0.1	0.2	0.3	0.4	0.5	1.0	2.0	3.0
Current I / mA	0	76	112	126	133	139	170	226	273

Figure 8.2

	wire P wire Q	
Figure 9.1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
(State the direction (to the left / to the right / into the paper / out of the paper) of the magnetic fied due to P.	eld at I mar
	i) In Figure 9.1, draw the direction of the magnetic force acting on Q due to P . (ii) Show that the magnitude of the magnetic force per unit length F_l acting on Q due to P is $F_l = \frac{\mu_o I_P I_Q}{2\pi r} ,$	l mar
	where μ_0 is the permeability of free space and r is the separation between the two wires. (3	mark
(v) For the magnetic force acting on Q due to P and the magnetic force acting on P due to Q , if P	
	briefly explain whether the two forces are equal in magnitude. (2	mark

(b) Figure 9.2 s	hows a metal s	linky spring.		a typic seed at the		
igure 9.2						
(i) If a dir stretche	ect current passed due to magne	ses through the setic force.	spring, briefly e	xplain whether	the spring wil	l be compresse (2 ma
(ii) A stude when a	ent suggests than	at the spring wil	l be compressed	l and stretched a	alternately due	e to magnetic fo
(ii) A stude when a	ent suggests than alternating cu	at the spring wil	l be compressed bugh. Briefly ex	l and stretched a	alternately due wrong.	e to magnetic fo
when a	n alternating cu	errent passes thro	ough. Briefly e	xplain why he is	wrong.	(1 m:
when a	n alternating cu	errent passes thro	ough. Briefly ex	xplain why he is	wrong.	(1 m:
when a	n alternating cu	errent passes thro	ough. Briefly ex	xplain why he is	wrong.	(1 m:
when a	n alternating cu	errent passes through	ough. Briefly et	xplain why he is	wrong.	(1 m:
when a	n alternating cu	errent passes thro	ough. Briefly ex	xplain why he is	wrong.	(1 m:

Go on to the next page

ks)	
ks)	
	marked
	not be
	lliw st
	nargir
rk)	the m
	tten in
	s wri
the ind (s)	Answer

10. Dust may adhere to the surfaces of photos and films due to electrostatic attraction. To reffectively, a special brush with a thin slice of polonium-210 (²¹⁰ ₈₄ Po) fixed near the brush h Figure 10.1 may be used. Polonium-210 undergoes α decay and the daughter nucleus lead (Pb)	air as shown ir
Figure 10.1 brush hair thin slice of polonium-210	
(a) Write a nuclear equation for the decay of polonium-210.	(2 marks)
(b) Briefly explain how the α particles help clean the charged dust.	(2 marks)
(c) Briefly explain why the polonium-210 slice must be fixed near to the brush hair.	(1 mark)
*(d) The manufacturer recommends that the brush should be returned to the factory for replated polonium-210 slice every year. Taking the activity of a newly replaced polonium-210 slice its activity after one year (365 days). Given: half-life of polonium-210 is 138 days.	e as 1 unit, find (2 marks)
END OF PAPER ources of materials used in this paper will be acknowledged in the booklet HKDSE Question Paper ne Hong Kong Examinations and Assessment Authority at a later stage.	rs published by

List of data, formulae and relationships

Data

molar gas constant
Avogadro constant
acceleration due to gravity
universal gravitational constan
speed of light in vacuum
charge of electron
electron rest mass
permittivity of free space
permeability of free space
atomic mass unit
astronomical unit
light year
parsec
Stefan constant
Planck constant

$R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$	
$N_{\rm A} = 6.02 \times 10^{23} \rm mol^{-1}$	
$g = 9.81 \text{ m s}^{-2}$ (close to the Earth)	
$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$	
$c = 3.00 \times 10^8 \mathrm{m \ s^{-1}}$	
$e = 1.60 \times 10^{-19} \mathrm{C}$	
$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$	
$\varepsilon_0 = 8.85 \times 10^{-12} \mathrm{C}^2 \mathrm{N}^{-1} \mathrm{m}^{-2}$	
$\mu_0 = 4\pi \times 10^{-7} \mathrm{H m^{-1}}$	
$u = 1.661 \times 10^{-27} \text{ kg}$	(1 u is equivalent to 931 MeV)
$AU = 1.50 \times 10^{11} \mathrm{m}$	
$ly = 9.46 \times 10^{15} m$	
$pc = 3.09 \times 10^{16} \text{ m} = 3.26 \text{ ly} = 20$	6265 AU
$\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$	
$h = 6.63 \times 10^{-34} \mathrm{J s}$	

Rectilinear motion

For uniformly accelerated motion:

$$v = u + at$$

$$s = ut + \frac{1}{2}at^{2}$$

$$v^{2} = u^{2} + 2as$$

Mathematics

Equation of a straight line	y = mx + c		
Arc length	$= r \theta$		
Surface area of cylinder	$= 2\pi rh + 2\pi r^2$		
Volume of cylinder	$=\pi r^2 h$		
Surface area of sphere	$=4\pi r^2$		
Volume of sphere	$= \frac{4}{3}\pi r^3$		

For small angles, $\sin \theta \approx \tan \theta \approx \theta$ (in radians)

Astronomy and Space S	Science	Energy and Use of Energy		
$U = -\frac{GMm}{r}$	gravitational potential energy	$E = \frac{\Phi}{A}$	illuminance	
$P = \sigma A T^4$ $ Af = A A A $	Stefan's law	$\frac{Q}{t} = \kappa \frac{A(T_{\rm H} - T_{\rm C})}{d}$	rate of energy transfer by conduction	
$\left \frac{\Delta f}{f_0} \right \approx \frac{v}{c} \approx \left \frac{\Delta \lambda}{\lambda_0} \right $	Doppler effect	$U = \frac{\kappa}{d}$	thermal transmittance U-value	
		$P = \frac{1}{2} \rho A v^3$	maximum power by wind turbine	
Atomic World		Medical Physics		
$\frac{1}{2}m_{\rm e}v_{\rm max}^2 = hf - \phi$	Einstein's photoelectric equation	$\theta \approx \frac{1.22\lambda}{d}$	Rayleigh criterion (resolving power)	
$E_{\rm n} = -\frac{1}{n^2} \left\{ \frac{m_{\rm e} e^4}{8h^2 \varepsilon_0^2} \right\} = -\frac{13.6}{n^2}$	eV	power = $\frac{1}{f}$	power of a lens	
	energy level equation for hydrogen atom	$L = 10 \log \frac{I}{I_0}$	intensity level (dB)	
$\lambda = \frac{h}{n} = \frac{h}{n}$	de Broglie formula	$Z = \rho c$	acoustic impedance	
$\theta \approx \frac{1.22\lambda}{d}$	Rayleigh criterion (resolving power)	$\alpha = \frac{I_{\rm r}}{I_0} = \frac{(Z_2 - Z_1)}{(Z_2 + Z_1)}$	2 intensity reflection coefficient	
d		$I = I_0 e^{-\mu x}$	transmitted intensity through a medium	

A1.	$E = mc \Delta T$	energy transfer during heating and cooling	D1.	$F = \frac{Q_1 Q_2}{4\pi \varepsilon_0 r^2}$	Coulomb's law
A2.	$E = l \Delta m$	energy transfer during change of state	D2.	$E = \frac{Q}{4\pi\varepsilon_0 r^2}$	electric field strength due to a point charge
A3.	pV = nRT	equation of state for an ideal gas	D3.	$E = \frac{V}{d}$	electric field between parallel plates (numerically)
A4.	$pV = \frac{1}{3} Nm\overline{c^2}$	kinetic theory equation	D4.	$R = \frac{\rho l}{A}$	resistance and resistivity
A5.	$E_{\rm K} = \frac{3RT}{2N_{\rm A}}$	molecular kinetic energy	D5.	$R = R_1 + R_2$	resistors in series
			D6.	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$	resistors in parallel
B1.	$F = m \frac{\Delta v}{\Delta t} = \frac{\Delta p}{\Delta t}$	force	D7.	$P = IV = I^2R$	power in a circuit
B2.	$moment = F \times d$	moment of a force	D8.	$F = BQv \sin \theta$	force on a moving charge in a magnetic field
В3.	$E_{\rm P} = mgh$	gravitational potential energy	D9.	$F = BIl \sin \theta$	force on a current-carrying conductor in a magnetic field
B4.	$E_{\rm K} = \frac{1}{2} m v^2$	kinetic energy	D10.	$B = \frac{\mu_0 I}{2\pi r}$	magnetic field due to a long straight wire
B5.	P = Fv	mechanical power	D11.	$B = \frac{\mu_0 NI}{l}$	magnetic field inside a long solenoid
B6.	$a = \frac{v^2}{r} = \omega^2 r$	centripetal acceleration	D12.	$\varepsilon = N \frac{\Delta \Phi}{\Delta t}$	induced e.m.f.
B7.	$F = \frac{Gm_1m_2}{r^2}$	Newton's law of gravitation	D13.	$\frac{V_{\rm s}}{V_{\rm p}} \approx \frac{N_{\rm s}}{N_{\rm p}}$	ratio of secondary voltage to primary voltage in a transformer
C1.	$\Delta y = \frac{\lambda D}{a}$	fringe width in double-slit interference	E1.	$N = N_0 e^{-kt}$	law of radioactive decay
C2.	$d\sin\theta=n\lambda$	diffraction grating equation	E2.	$t_{\frac{1}{2}} = \frac{\ln 2}{k}$	half-life and decay constant
C3.	$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$	equation for a single lens	E3.	A = kN	activity and the number of undecayed nuclei

mass-energy relationship