2017-DSE PHY PAPER 2 HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2017 ## PHYSICS PAPER 2 ### Question-Answer Book 11.45 am – 12.45 pm (1 hour) This paper must be answered in English #### INSTRUCTIONS - (1) After the announcement of the start of the examination, you should first write your Candidate Number in the space provided on Page 1 and stick barcode labels in the spaces provided on Pages 1, 3, 5, 7 and 9. - (2) This paper consists of FOUR sections, Sections A, B, C and D. Each section contains eight multiple-choice questions and one structured question which carries 10 marks. Attempt ALL questions in any TWO sections. - (3) Write your answers to the structured questions in the ANSWER BOOK provided. For multiple-choice questions, blacken the appropriate circle with an HB pencil. You should mark only ONE answer for each question. If you mark more than one answer, you will receive NO MARKS for that question. - (4) Graph paper and supplementary answer sheets will be provided on request. Write your candidate number, mark the question number box and stick a barcode label on each sheet, and fasten them with string INSIDE the Answer Book. - (5) The Question-Answer Book and Answer Book will be collected SEPARATELY at the end of the examination. - (6) The diagrams in this paper are NOT necessarily drawn to scale. - (7) The last two pages of this Question-Answer Book contain a list of data, formulae and relationships which you may find useful. - (8) No extra time will be given to candidates for sticking on the barcode labels or filling in the question number boxes after the 'Time is up' announcement. ©香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2017 # Section A: Astronomy and Space Science ## Q.1: Multiple-choice questions | 1.1 | Norr
Mar | nally, Mars moves eastward in the sky s was observed. Which of the following | throughout the year. In May g statements is/are correct? | and Jun | ne 2016, 1 | retrograd | e motion of | |-----|-------------------|---|--|-----------|-------------|------------|-----------------| | | (1)
(2)
(3) | During that period, Mars moved wester
Retrograde motion is observed because
Ptolemy's geocentric model cannot ex | e the Earth moves faster than | Mars. | | | | | | A. | (1) only | | A | В | С | D | | | B.
C.
D. | (3) only
(1) and (2) only
(2) and (3) only | | 0 | 0 | 0 | 0 | | | | | | | | | | | 1.2 | | astronauts are experiencing 'weightles
g respectively. Which of the following | | mass of | f the astro | onauts ar | e 50 kg and | | | (1)
(2)
(3) | No gravitational force is acting on the
The net forces acting on the two astron
The two astronauts have the same according | nauts are the same. | | | | | | | A. | (1) only | | Α | В | С | D | | | B.
C.
D. | (3) only
(1) and (2) only
(2) and (3) only | | 0 | 0 | 0 | 0 | 1.3 | grav | given that the Moon's radius is 0.273 given the Moon's surface is $\frac{1}{6}g$, where scape velocity from the surface of the H | e g is the acceleration due to | gravity o | on the Ea | rth's surf | face. If v is | | | A. | 0.046 v | | Α | В | С | D | | | B.
C. | 0.167 ν
0.213 ν | | 0 | 0 | 0 | 0 | | | D. | 0.273 v | | | | | | | | | | | | | | | 1.4 The following shows two pictures of the same region of the sky taken in January and May of a certain year. *P*, *Q*, *R*, *S* and *T* are five stars. $\begin{array}{c} +_{P} \\ & \star_{S} \\ & \bullet_{T} \\ +_{Q} \end{array}$ January view May view Which of the following statements MUST BE correct? - (1) Stars P, Q and R are equidistant from the Earth. - (2) The parallax of star S is smaller than that of star T. - (3) Star S is closer to the Earth than star T. - A. (1) only - B. (3) only - C. (1) and (2) only - D. (2) and (3) only - A B C I - 1.5 The table below shows the apparent magnitudes and absolute magnitudes of three stars. | star | apparent magnitude | absolute magnitude | |-----------|--------------------|--------------------| | Sirius A | -1.47 | 1.42 | | Vega | 0.03 | 0.58 | | Polaris A | 1.98 | -3.64 | Which of the following is correct? | greatest luminosity | farthest from the Earth | brigl | itest as s | een fron | the Ear | th | |---------------------|-----------------------------------|--|---|--|---|--| | Sirius A | Sirius A | | Polar | ris A | | | | Sirius A | Vega | | | | | | | Polaris A | Vega | | Polar | ris A | | | | Polaris A | Polaris A | | Siriu | s A | | | | | | Α | В | С | D | | | | | 0 | 0 | 0 | 0 | | | | Sirius A
Sirius A
Polaris A | Sirius A Sirius A Sirius A Vega Polaris A Vega | Sirius A Sirius A Vega Polaris A Vega Polaris A Polaris A | Sirius A Sirius A Polaris A Vega Sirius A Polaris A Vega Polaris A Polaris A Polaris A Siriu | Sirius A Sirius A Polaris A Sirius A Vega Sirius A Polaris A Vega Polaris A Polaris A Polaris A Polaris A Polaris A | Sirius A Sirius A Polaris A Sirius A Vega Sirius A Polaris A Vega Polaris A Polaris A Polaris A Polaris A Polaris A Sirius A | 1.6 The diagram shows the spectra of radiation from a black body at two different temperatures, T_1 and T_2 . Which of the following is correct? | | higher temperature | colour at T ₂ | | | | | |----|--------------------|--------------------------|---|---------|---------|---| | A. | T_1 | appears redder | A | В | С | D | | B. | T_1 | appears bluer | | \circ | \circ | 0 | | C. | T_2 | appears redder | O | 0 | 0 | O | | D. | T_2 | appears bluer | | | | | 1.7 It is known that the Sun is a class G star, and the star Zeta Puppis is a class O supergiant. Which of the following is correct? Given: the sequence of the spectral classes is O B A F G K M. | | higher surface
temperature | greater luminosity | | | | | | |----|-------------------------------|--------------------|---|---|---|---|--| | A. | Zeta Puppis | Zeta Puppis | Α | В | С | D | | | B. | Zeta Puppis | the Sun | | 0 | 0 | 0 | | | C. | the Sun | Zeta Puppis | O | 0 | 0 | 0 | | | D. | the Sun | the Sun | | | | | | 1.8 The figure shows some information of stars X, Y and Z. Which of the following comparisons about the size of the three stars is correct? - A. X > Y > Z - B. X = Y > Z - C. X > Y = Z - D. Z > Y > X - A - D ## Q.1: Structured question (a) Figure 1.1 shows an object of mass m orbiting around a star of mass M with a radius of r. The velocity of the object is v. Figure 1.1 (i) Using Newton's law of gravitation, show that $$v^2 = \frac{GM}{r}$$, where G is the universal gravitational constant. (1 mark) (ii) Hence, or otherwise, show that $$T^2 = \frac{4\pi^2}{GM}r^3 ,$$ where T is the period of the motion of the object. (2 marks) - (b) Stars and gases orbit around the centre of the M33 Galaxy. At a position X near the edge of the galaxy $(3.98 \times 10^{20} \text{ m})$ from the centre of the galaxy), the orbital velocity of the hydrogen gas is about $1.23 \times 10^5 \text{ m s}^{-1}$. You may assume that the hydrogen gas at X orbits with a circular orbit. - (i) One of the spectral lines of hydrogen gas (the H I line) has a wavelength of 21.106 cm. If the hydrogen gas at X is moving towards the Earth along the line of sight, what would be the observed wavelength of the H I line? (2 marks) - (ii) How long would it take for the hydrogen gas at X to complete one orbit around the M33 Galaxy? (1 mark) - (iii) Using the results of (a)(ii), or otherwise, estimate the mass of the M33 Galaxy in solar mass. Given: $1AU = 1.50 \times 10^{11}$ m, and $1 \text{ year} = 3.16 \times 10^7$ s. (3 marks) - (iv) Astronomers estimated that the total mass of luminous objects in the M33 Galaxy is 7×10^9 solar mass. Compare this to your answer in (b)(iii) and suggest a reason to explain the difference, if any. (1 mark) ## Section B: Atomic World ## Q.2: Multiple-choice questions - 2.1 Which of the following statements are correct according to Rutherford's atomic model? - Almost all the mass of an atom are concentrated at the nucleus. (1) - Almost all the charges of an atom are concentrated at the nucleus. - Electrons orbit around the nucleus. (3) - (1) and (2) only A. - (1) and (3) only B. - (2) and (3) only C. - (1), (2) and (3) D. 2.2 A photocell is connected to a 1 V d.c. source as shown. A monochromatic light beam with each photon of energy 5 eV is incident on cathode C of the photocell so that photoelectrons are emitted. If the work function of cathode C is 2 eV, what is the maximum kinetic energy of the photoelectrons reaching anode A? - 2 eV A. - B. 3 eV - C. 4 eV - D. 6 eV - D - 2.3 When monochromatic light of wavelengths λ and $\frac{3}{4}\lambda$ are incident on the cathode surface of a photocell separately, the stopping potentials are in the ratio of 1:2. What is the longest wavelength of monochromatic light that can cause photoelectrons to be emitted from the photocell? - B. 2017-DSE-PHY 2-7 | | vap | our. Which of the following would hap | pen after the sodium vapour | absorbs | the yello | w light? | | |-----|----------------------|---|-----------------------------|---------------------------------|------------------|--------------------------------|-------------------------------| | | A.
B.
C.
D. | No more yellow light can be seen. The sodium vapour emits yellow light The sodium vapour emits yellow light The sodium vapour emits white light | t in all directions. | ent bean | n. | | | | | | | | Α | В | C | D | | | | | | 0 | 0 | 0 | 0 | 2.5 | | eam of 8 keV electrons is directed tow
Broglie wavelength of a 8 keV electron? | | e diffrac | tion of e | lectrons. | What is the | | | A. | $4.34 \times 10^{-10} \text{ m}$ | | Α | В | C | D | | | В. | $1.37 \times 10^{-11} \mathrm{m}$ | | \bigcirc | \circ | 0 | 0 | | | C.
D. | $1.74 \times 10^{-19} \text{ m}$
$5.49 \times 10^{-21} \text{ m}$ | | O | Ü | O | | | | | | | | | | | | 2.6 | be u | radio telescope situated in Guizhou pro
used to observe electromagnetic waves
imum angular separation that the telesco | of frequencies between 7 × | ture of 3
10 ⁷ Hz | 00 m for and 3 × | observa
10 ⁹ Hz. | tions. It can
Estimate the | | | A. | $4.07 \times 10^{-4} \text{rad}$ | | Α | В | С | D | | | B. | $9.49 \times 10^{-4} \text{ rad}$ | | \circ | | _ | 0 | | | C. | $1.74 \times 10^{-2} \text{rad}$ | | 0 | 0 | 0 | 0 | | | D. | $4.07 \times 10^{-2} \text{ rad}$ | | | | | | | 2.7 | | leaves of the plant Edelweiss are cove | | | | nts absor | b ultraviolet | | | raun | ation but reflect all visible light. Which | of the following statements | are com | ect? | | | | | (1)
(2)
(3) | The leaves appear white in colour und
Optical microscopes cannot be used to
Due to their tiny size, the filaments do | observe the filaments. | | | TO THE OWNER. | <i>i</i> . | | | A. | (1) and (2) only | | A | В | С | D | | | В. | (1) and (3) only | | \bigcirc | 0 | \circ | 0 | | | C. | (2) and (3) only | | \cup | O | 0 | 0 | | | D. | (1), (2) and (3) | 2.4 A parallel beam of yellow light from a sodium discharge tube is directed to a glass tube filled with sodium 2.8 A scanning tunnelling microscope (STM) scans across a sample surface as shown. The probe scans horizontally across the sample surface at a fixed height. sample surface Which of the following graphs best represents the variation of the tunnelling current with distance travelled by the probe ? A. В. C. D. A ### Q.2: Structured question Figure 2.1 shows part of the line spectrum of hydrogen. Figure 2.1 increasing wavelength It contains a series of spectral lines with wavelength λ given by $$\frac{1}{\lambda} = R(\frac{1}{2^2} - \frac{1}{n^2})$$, where R is a constant and n = 3, 4, 5, ... There are no spectral lines in the series with wavelength less than that of line X(366 nm) nor greater than that of line Y. - (a) Use Bohr's model of the hydrogen atom to explain why the spectral lines are discrete but not continuous. (2 marks) - (b) (i) Which region of the electromagnetic spectrum does line X belong to? (1 mark) - (ii) What is the energy of a photon of line X? Express your answer in eV. (2 marks) - (iii) What would happen when a beam of radiation having the same wavelength as line X is incident on hydrogen atoms in the first excited state (n = 2)? Briefly explain. (2 marks) - (c) (i) State the transition in a hydrogen atom that can produce line Y. (1 mark) - (ii) Determine the wavelength of line Y. (2 marks) ## Section C: Energy and Use of Energy ## Q.3: Multiple-choice questions 3.1 A street lamp is installed 10 m above the ground on the side of a road. At a point X which is 5 m from the side on the road surface, the illuminance is 30 lux. Taking the lamp as a point source emitting light uniformly in all directions, and neglecting the reflections and contributions from other light sources, estimate the luminous flux of the street lamp. - $4.21 \times 10^4 \text{ lm}$ - $5.27 \times 10^4 \text{ lm}$ - $5.80 \times 10^4 \text{ lm}$ $6.59 \times 10^4 \text{ lm}$ C. - 3.2 Arrange the efficacy of the following light sources from the largest to the smallest. | | X | Y | Z | |---------------|--------|--------|--------| | rated power | 11 W | 13 W | 20 W | | luminous flux | 300 lm | 400 lm | 500 lm | - X, Y, Z - B. X, Z, Y - C. Y, X, Z - Y, Z, X - The surface of an induction cooker is usually made of strengthened glass. The glass surface gets hot after use mainly because - an induction cooker has a high energy efficiency. A. - heat is transferred from the cooking utensil to the glass surface when the cooking utensil gets hot. 11 - C. an eddy current flows in the glass. - heat is produced in the solenoid of the cooker. D - 3.4 Which of the following changes WILL NOT reduce the Overall Thermal Transfer Value (OTTV) of a building? - A. building a roof-top garden - A B C D - B. installing heat insulating materials on the walls - C. adding solar control window films to the windowsD. painting the exterior of the building in dark colour - 3.5 A solar panel of area 3 m² is installed on a roof. Sunlight makes an angle of 20° to the normal of the panel at noon. The solar constant is 1366 W m⁻² and 40% of the radiation power is absorbed by the atmosphere. If the efficiency of the solar panel is 10%, what is the electrical power generated by it at noon? - A. 84 W - B. 154 W - C. 231 W - D. 246 W $\begin{array}{cccc} A & B & C \\ \bigcirc & \bigcirc & \bigcirc \end{array}$ D 0 0 0 0 3.6 The figure shows a wind turbine. Which of the following statements explain why the wind turbine is NOT 100% efficient in converting the kinetic energy of the wind to electrical energy? - (1) There are mechanical energy losses in the moving parts. - (2) Wind does not stop completely after passing through the rotor. - (3) The direction of wind changes irregularly. - A. (1) and (2) only - B. (1) and (3) only - C. (2) and (3) only - D. (1), (2) and (3) - A B C D - 0 0 0 0 3.7 The hydroelectric power plant shown has an efficiency of 40% in electricity generation. If the flow rate of the water is 300 m³ s⁻¹, what is the power output of the plant? Given: density of water is 1000 kg m⁻³. Take g = 9.81 m s⁻². - A. 11.8 MW - B. 58.9 MW - C. 70.6 MW - D. 88.3 MW 3.8 Energy is released in the following nuclear fission of uranium-235. $$^{235}_{92}\text{U} + ^{1}_{0}\text{n} \rightarrow ^{94}_{40}\text{Zr} + ^{139}_{52}\text{Te} + 3^{1}_{0}\text{n}$$ Which of the following statements concerning the reaction is/are correct? - (1) The rate of the reaction can be controlled by absorbing some of the neutrons produced. - (2) Mass is conserved in the reaction. - (3) The binding energy per nucleon of $^{235}_{92}$ U is higher than that of $^{94}_{40}$ Zr or $^{139}_{52}$ Te. - A. (1) only - B. (3) only - C. (1) and (2) only - D. (2) and (3) only A B C D 0 0 0 0 ### Q.3: Structured question A refrigerated truck is used for transporting frozen goods. A refrigerator is installed in the refrigerated compartment. (a) Figure 3.1 shows a simplified schematic diagram of a refrigerator. expansion valve Figure 3.1 Outdoor compressor - (i) In which direction does the refrigerant flow through the compressor (from indoor to outdoor or from outdoor to indoor)? (1 mark) - (ii) Describe the change of state of the refrigerant and the heat exchange when it flows through component P. (2 marks) - (b) Figure 3.2 shows the dimensions of the refrigerated compartment. The compartment is insulated using 0.08 m thick polystyrene. The thermal conductivity of polystyrene is 0.03 W m⁻¹ K⁻¹. Figure 3.2 - (i) If a temperature difference of 50°C is maintained between the exterior and the interior surfaces, estimate the minimum cooling capacity required for the refrigerator. (Hint: consider all the surfaces of the compartment.) (3 marks) - (ii) On a sunny afternoon, the **AIR TEMPERATURE** is 35°C. By using the refrigerator with cooling capacity calculated in (b)(i), briefly explain why the temperature inside the compartment **CANNOT** be maintained at -15°C. (2 marks) - (c) Light emitting diodes (LED) are installed inside the refrigerated compartment for illumination. State TWO advantages of using LED over other common types of lighting. (2 marks) # Section D: Medical Physics ## Q.4: Multiple-choice questions 4.1 The figure shows an eye looking at a distant object. Which of the following is correct? | | lens of the eye | corrected by wearing spectacles with | | | | | |----|-----------------|--------------------------------------|------------|------------|------------|------------| | A. | too thick | diverging lens | Α | В | C | D | | B. | too thick | converging lens | \bigcirc | \bigcirc | \bigcirc | \bigcirc | | C. | too thin | diverging lens | \circ | 0 | \circ | \circ | | D. | too thin | converging lens | | | | | - 4.2 Which of the following statements about human hearing are correct? - The ear bones in the middle ear convert sound waves into vibrations of the ear drum. - Pressure is amplified because of the difference in area between the ear drum and the oval window. - Mechanical vibrations are converted into electrical signals in the inner ear. - A. (1) and (2) only - (1) and (3) only - C. (2) and (3) only - (1), (2) and (3) - The sound intensity level in a factory is 95 dB. The workers in the factory wear ear protectors that can reduce the sound intensity level by 30 dB. What is the intensity of sound as heard by the workers? Given: the threshold of hearing $I_0 = 1 \times 10^{-12} \text{ W m}^{-2}$ - $1.00 \times 10^{-9} \text{ W m}^{-2}$ $3.16 \times 10^{-6} \text{ W m}^{-2}$ $3.16 \times 10^{-3} \text{ W m}^{-2}$ 3.16 W m^{-2} A. - B. - C. D 4.4 The acoustic impedances of various tissues and that of air are listed in the following table. | | acoustic impedance (× 10 ⁶ kg m ⁻² s ⁻¹) | |--------|---| | fat | 1.34 | | liver | 1.65 | | muscle | 1.71 | | bone | 7.8 | | air | 0.0004 | Which of the following interface will give the largest intensity reflection coefficient in ultrasound scans? - A. liver muscle - B. fat muscle - C. muscle bone - D. muscle air 4.5 An ultrasound transducer is used to scan the eye (Figure 4.5.1) and the echoes received are shown in Figure 4.5.2. The velocity of the ultrasound waves in the eye is 1550 m s⁻¹. The thickness of the lens is about - A. 1.6 mm. - B. 3.5 mm. - C. 7.0 mm. - D. 18.6 mm. - A B C D - 0 0 0 D | 4.0 | VV 111 | ich of the following statements about all en | doscope is correct: | | | | |-----|----------------------|---|---|---------------------------|---------|---------------| | | A.
B.
C. | Coherent bundle fibers are used to transn
Light can only travel from the objective t
The refractive index of the cladding of th | to the eyepiece, but not in the op
the glass fiber is higher than that | oposite dire
of glass. | ection. | | | | D. | An endoscope can only show black-and- | white images. | | | | | | | | A | В | C | D | | | | | 0 | 0 | 0 | 0 | 4.7 | A ce | ertain tracer Y has a biological half-life of \mathcal{I} -life of Y ? | 3 days and a physical half-life o | of 4 hours. | What is | the effective | | | A. | 0.24 hours | A | В | C | D | | | B. | 1.71 hours | 0 | 0 | 0 | 0 | | | C.
D. | 3.79 hours
4.23 hours | 4.8 | Whi | ch of the following statements about radion | nuclide imaging is correct? | | | | | | A.
B.
C.
D. | Due to the decay of the tracer, images sho
The gamma camera emits gamma radiation
Radionuclide imaging can clearly reveal
For a period of time after injecting the tra | on to irradiate the tracer. the structure of a failed organ. | | | d. | | | | | | В | С | D | | | | | A | 0 | \circ | 0 | | | | | O | O | O | O | #### Q.4: Structured question X-ray radiographic imaging and computed tomography (CT) scans are used for medical purposes. (a) Briefly describe how X-ray is produced. (1 mark) (b) State an advantage of a CT scan over X-ray radiographic imaging. (1 mark) (c) The effective dose of radiation absorbed can be measured in millisieverts (mSv) or expressed as the time taken to receive the equivalent dose from background radiation. The effective doses for a chest X-ray radiographic imaging and a chest CT scan are shown below. | | effective dose (mSv) | equivalent background radiation dose (days) 1.85 610.5 | | | |----------------------------------|----------------------|---|--|--| | chest X-ray radiographic imaging | 0.02 | | | | | chest CT scan | 6.6 | | | | (i) Briefly explain why the effective dose of a CT scan is much higher. (1 mark) - (ii) A head CT scan has an effective dose of 1.5 mSv. Based on the information from the table, estimate its equivalent background radiation dose.(1 mark) - (d) In a CT scan, a narrow X-ray beam of initial intensity Io transmits through lung cavity, soft tissue and bone along its path. The table below shows the linear attenuation coefficients of the tissues, and the path lengths of the X-ray in the tissues. | | linear attenuation coefficient (cm ⁻¹) | path length (cm) | | |-----------------|--|------------------|--| | lung cavity 0.1 | | 19.8 | | | soft tissue | 0.18 | 8.8 | | | bone | 0.48 | 4.4 | | (i) Briefly explain the large difference in linear attenuation coefficient between lung cavity and bone. (1 mark) (ii) Determine the value of $\frac{\text{transmitted intensity }I}{\text{initial intensity }I_{\text{o}}}$ of the X-ray after transmitted through lung cavity, soft tissue and bone. (3 marks) (e) A student suggests that a CT scan can be used for checking a foetus. Briefly explain whether you agree or not. If you do not agree, suggest a suitable medical imaging method for checking a foetus. (2 marks) #### END OF PAPER Sources of materials used in this paper will be acknowledged in the booklet *HKDSE Question Papers* published by the Hong Kong Examinations and Assessment Authority at a later stage. #### List of data, formulae and relationships #### Data molar gas constant Avogadro constant acceleration due to gravity universal gravitational constant speed of light in vacuum charge of electron electron rest mass permittivity of free space permeability of free space atomic mass unit astronomical unit light year parsec Stefan constant Planck constant $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$ $N_{\text{A}} = 6.02 \times 10^{23} \text{ mol}^{-1}$ $g = 9.81 \text{ m s}^{-2} \text{ (close to the Earth)}$ $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$ $c = 3.00 \times 10^8 \text{ m s}^{-1}$ $e = 1.60 \times 10^{-19} \text{ C}$ $m_{\text{e}} = 9.11 \times 10^{-31} \text{ kg}$ $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$ $\mu_0 = 4\pi \times 10^{-7} \text{ H m}^{-1}$ $u = 1.661 \times 10^{-27} \text{ kg}$ (1 u is equivalent to 931 MeV) $AU = 1.50 \times 10^{11} \text{ m}$ $ly = 9.46 \times 10^{15} \text{ m}$ $pc = 3.09 \times 10^{16} \text{ m} = 3.26 \text{ ly} = 206265 \text{ AU}$ $\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$ #### Rectilinear motion For uniformly accelerated motion: $$v = u + at$$ $$s = ut + \frac{1}{2}at^{2}$$ $$v^{2} = u^{2} + 2as$$ #### Mathematics $h = 6.63 \times 10^{-34} \,\mathrm{J s}$ Equation of a straight line y = mx + cArc length $= r \theta$ Surface area of cylinder $= 2\pi rh + 2\pi r^2$ Volume of cylinder $= \pi r^2 h$ Surface area of sphere $= 4\pi r^2$ Volume of sphere $= \frac{4}{3}\pi r^3$ For small angles, $\sin \theta \approx \tan \theta \approx \theta$ (in radians) | Astronomy and Space Science | | Energy and Use of Energy | | |---|---|--|--| | $U = -\frac{GMm}{r}$ $P = \sigma A T^4$ | gravitational potential energy | $E = \frac{\Phi}{A}$ | illuminance | | | Stefan's law | $\frac{Q}{t} = \kappa \frac{A(T_{\rm H} - T_{\rm C})}{d}$ | rate of energy transfer by conduction | | $\left \frac{\Delta f}{f_0} \right \approx \frac{\nu}{c} \approx \left \frac{\Delta \lambda}{\lambda_0} \right $ | Doppler effect | $U = \frac{\kappa}{d}$ | thermal transmittance U-value | | | | $P = \frac{1}{2} \rho A v^3$ | maximum power by wind turbine | | Atomic World | | Medical Physics | | | $\frac{1}{2}m_{\rm e}v_{\rm max}^2 = hf - \phi$ | Einstein's photoelectric equation | $\theta \approx \frac{1.22\lambda}{d}$ | Rayleigh criterion (resolving power) | | $E_{\rm n} = -\frac{1}{n^2} \left\{ \frac{m_{\rm e} e^4}{8h^2 \varepsilon_0^2} \right\} = -\frac{13}{n^2}$ | <u>6</u> eV | $power = \frac{1}{f}$ | power of a lens | | | energy level equation for hydrogen atom | $L = 10 \log \frac{I}{I_0}$ | intensity level (dB) | | $\lambda = \frac{h}{h} = \frac{h}{h}$ | de Broglie formula | $Z = \rho c$ | acoustic impedance | | $hat{hat{hat{hat{hat{hat{hat{hat{hat{hat{$ | Rayleigh criterion (resolving power) | $\alpha = \frac{I_r}{I_0} = \frac{(Z_2 - Z_1)}{(Z_2 + Z_1)}$ | $\frac{2}{2}$ intensity reflection coefficient | | d | (, toothing period) | $I = I_0 e^{-\mu x}$ | transmitted intensity through a medium | | A1. | $E = mc \Delta T$ | energy transfer during heating and cooling | D1. | $F = \frac{Q_1 Q_2}{4\pi \varepsilon_0 r^2}$ | Coulomb's law | |-----|---|--|------|---|--| | A2. | $E = l \Delta m$ | energy transfer during change of state | D2. | $E = \frac{Q}{4\pi\varepsilon_0 r^2}$ | electric field strength due to a point charge | | A3. | pV = nRT | equation of state for an ideal gas | D3. | $E = \frac{V}{d}$ | electric field between parallel plates (numerically) | | A4. | $pV = \frac{1}{3} Nm\overline{c^2}$ | kinetic theory equation | D4. | $R = \frac{\rho l}{A}$ | resistance and resistivity | | A5. | $E_{\rm K} = \frac{3RT}{2N_{\rm A}}$ | molecular kinetic energy | D5. | $R = R_1 + R_2$ | resistors in series | | | | | D6. | $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$ | resistors in parallel | | B1. | $F = m \frac{\Delta v}{\Delta t} = \frac{\Delta p}{\Delta t}$ | force | D7. | $P = IV = I^2R$ | power in a circuit | | B2. | $moment = F \times d$ | moment of a force | D8. | $F = BQv \sin \theta$ | force on a moving charge in a magnetic field | | В3. | $E_{\rm P} = mgh$ | gravitational potential energy | D9. | $F = BIl \sin \theta$ | force on a current-carrying conductor in a magnetic field | | B4. | $E_{\rm K} = \frac{1}{2}mv^2$ | kinetic energy | D10. | $B = \frac{\mu_0 I}{2\pi r}$ | magnetic field due to a long straight wire | | B5. | $P = F_{\mathcal{V}}$ | mechanical power | D11. | $B = \frac{\mu_0 NI}{l}$ | magnetic field inside a long solenoid | | B6. | $a = \frac{v^2}{r} = \omega^2 r$ | centripetal acceleration | D12. | $\varepsilon = N \frac{\Delta \Phi}{\Delta t}$ | induced e.m.f. | | B7. | $F = \frac{Gm_1m_2}{r^2}$ | Newton's law of gravitation | D13. | $\frac{V_{\rm s}}{V_{\rm p}} \approx \frac{N_{\rm s}}{N_{\rm p}}$ | ratio of secondary voltage to primary voltage in a transformer | | | | | | | | | C1. | $\Delta y = \frac{\lambda D}{a}$ | fringe width in double-slit interference | E1. | $N = N_0 e^{-kt}$ | law of radioactive decay | | C2. | $d\sin\theta=n\lambda$ | diffraction grating equation | E2. | $t_{\frac{1}{2}} = \frac{\ln 2}{k}$ | half-life and decay constant | | C3. | $\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$ | equation for a single lens | E3. | A = kN | activity and the number of undecayed nuclei | E4. $\Delta E = \Delta mc^2$ mass-energy relationship